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réface

Cette collection concerne les nouveaux programmes des classes préparatoires aux Grandes Ecoles, mis en appli-
cation 2 la rentrée de septembre 2003 pour les classes de premicre année MPSI, PCSI et PTSI.

e Les auteurs ont fait en sorte de placer les mathématiques a leur juste place, en privilégiant la réflexion et le
raisonnement physique et en mettant I’accent sur les parametres significatifs et les relations qui les unissent.

e La physique est une science expérimentale et doit &tre enseignée en tant que telle. Les auteurs ont particulie-
rement soigné la description des dispositifs expérimentaux sans négliger la dimension pratique. Souhaitons que
leurs efforts incitent professeurs et éléves a améliorer ou a susciter les activités expérimentales toujours tres for-
matrices.

e Laphysique n’est pas une science désincarnée, uniquement préoccupée de spéculations fermées aux réalités tech-
nologiques. Chaque fois que le sujet s’y préte, les auteurs ont donné une large place aux applications scienti-
fiques ou industrielles, propres a motiver nos futurs chercheurs et ingénieurs.

e Laphysique n’est pas une science aseptisée et intemporelle, elle est le produit d’une époque et ne s’exclut pas
du champ des activités humaines. Les auteurs n’ont pas dédaigné les références a 1’histoire des sciences, aussi
bien pour décrire 1’évolution des modeles théoriques que pour replacer les expériences dans leur contexte.

L’équipe d’auteurs, coordonnée par Jean-Marie Bresec, est composée de professeurs de classes préparatoires
trés expérimentés, qui possédent une longue pratique des concours des Grandes Ecoles et dont la compétence
scientifique est unanimement reconnue. Cette équipe a travaillé en relation étroite avec les auteurs des collec-
tions DuranpEau et DuruptHY du second cycle des classes de lycée ; les ouvrages de classes préparatoires s’ins-
crivent donc dans une parfaite continuité avec ceux du secondaire, tant dans la forme que dans I’esprit.

Gageons que ces ouvrages constitueront de précieux outils pour les étudiants, tant pour une préparation efficace
des concours que pour I’acquisition d’une solide culture scientifique.

J.-P. DURANDEAU
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Distributions
de charges

It duehis™)

La matiere est constituée d’électrons, de protons
et de neutrons. Pour décrire les propriétés

de ces particules, il est nécessaire de leur associer
une grandeur physique appelée charge électrique.

En étudiant les propriétés et les interactions

des ensembles (ou distributions)

de charges électriques, nous définirons le cadre
de I’électromagnétisme adopté dans cet ouvrage.

OBJECTIFS

B Choisir un modele de description des dis-
tributions de charges.

B Reconnaitre leurs symétries.

PRI’EREQUIS

B Expériences élémentaires d’€lectrisation vues
dans le cycle secondaire.
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I La charge électrique

I.1. Electrisation — Charge élémentaire

I.1.1. Expériences qualitatives

Les expériences d’électrisation sont connues depuis 1’ Antiquité ; celles-ci (vues
dans les classes antérieures) mettent en évidence quelques propriétés électriques
de la matiere :

 certains matériaux (verre, plexiglas...) possedent, lorsqu’ils ont été frottés avec
d’autres matériaux, la propriété d’attirer des corps 1égers. Nous disons qu’ils ont été
électrisés ;

* les interactions observables entre corps électrisés conduisent a distinguer deux

types d’électrisation. Deux objets semblablement électrisés se repoussent et, dans
le cas contraire, ils s’attirent.

L’étude quantitative des lois d’attraction et de répulsion fut réalisée par A. de
Coulomb (1736-1806), qui proposa sa loi d’interaction en 1785.

I.1.2. Particules et charges élémentaires

Des expériences datant de la fin du xix® siecle (J.-J. Thomson, 1856-1940 et
J. Perrin, 1870-1942) conduisent & une interprétation de la matiere en termes de
corpuscules élémentaires pouvant porter des charges électriques positives ou néga-
tives.

L’unité de charge est le coulomb, noté C.

* Les protons, chargés positivement, constituent avec les neutrons, de charge nulle,
les noyaux des atomes.

* Les électrons, chargés négativement, constituent I’enveloppe (nuage électro-
nique) de ces mémes atomes.

* La charge de I’électron vaut —e =-1,602.10~ 19 C | Fait remarquable, celle
du proton lui est exactement opposée ; elle est égale a +e.

Lors des expériences classiques d’électrisation, les charges positives, liées aux
noyaux, restent au sein des supports matériels. On obtient une électrisation posi-
tive ou négative des objets utilisés lorsque des électrons sont respectivement arra-
chés ou apportés.

Les charges observées sont toujours des multiples entiers de la charge
élémentaire e : la charge électrique est quantifiée.

Remarque
Les quarks, constituants ultimes de la matiére nucléaire connus a ce jour, portent
des charges multiples entiers de % . Ils ne sont pas observés isolément, mais a

Uintérieur de structures dont la charge est un multiple entier de e .



I.2. Conservation de la charge

La charge électrique est une grandeur fondamentale qui intervient dans les expressions
des champs électromagnétiques créés par des distributions de charges statiques ou
mobiles (courants).

Toutes les interactions connues a ce jour (collisions de particules dans les accéléra-
teurs, réactions chimiques, etc.) ont la propriété de conserver la charge électrique.
En outre, cette grandeur est indépendante du référentiel d’observation.

Pour un systeme fermé, c’est-a-dire n’échangeant pas de matiere avec ’ex-
térieur, la charge électrique est constante et elle est la méme pour tous les
observateurs.

La charge électrique est une grandeur indépendante du référentiel d’observation.

2 Distributions de charges

2.1. Charges ponctuelles

Une particule est en général un objet d’extension spatiale tres limitée. L extension
d’un nucléon (composant du noyau d’un atome : proton ou neutron), par exemple,
est de I’ordre du fermi ou femtometre (10~ 15 m).

Les lois de I’électromagnétisme donnent une description satisfaisante du compor-
tement des particules chargées tant que les distances mises en jeu restent grandes
devant cette distance élémentaire.

Assimiler les particules élémentaires chargées a des points matériels portant une
charge constitue ainsi une approximation convenable.

Nous définirons une distribution de N charges ponctuelles par I’ensemble des posi-
tions 7; = OM; des charges ¢, , i variant de 1 a N (doc. 1).

2.2. Modélisation d’une répartition de charges

2.2.1. Echelle microscopique

A T’échelle microscopique, caractérisée par une longueur notée d, la structure de
la matiere apparait discontinue.

Dans un milieu condensé (solide, liquide), cette distance d sera de 1’ordre de
quelques dizaines de nanometres, car la taille d’un atome est de I’ordre de
0,1 nm.

Ainsi, dans un cristal, les distances séparant les atomes ou les ions varient environ de
0,2nmalnm.

Pour un observateur capable d’une observation microscopique du milieu, celui-ci
pourrait avoir un aspect semblable a celui représenté par le document 2.

Remarque

L'utilisation d’un microscope a effet tunnel permet ce genre d’observation. Grice a cet
apparell, il est par exemple possible d’observer la surface d’un solide en distinguant les
couches d’empilement des atomes le composant.

1. pistributions de charges

Mi(q1)
My(qn)

M 2(q2)

M;(q))

Doc. 1. Distribution de N charges ponc-
tuelles.

P @3
NYAN?

Doc. 2. Répartition de charges a I'échelle
microscopique.
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Application 1

Ordre de grandeur de d dans un plasma

Evaluer 1’ordre de grandeur de la longueur Si nous associons a chaque particule un volume égal
caractéristique d pour un plasma, milieu ionisé 2 d3, un ordre de grandeur de d s’établit a :
constitué d’électrons et d’ions de densités identiques = ; L =10-"m =102 nm .

n=102m3. Vn

2.2.2. Echelle macroscopique

L’échelle macroscopique est fixée par une longueur caractéristique D définie a par-
tir des caractéristiques significatives directement perceptibles a I’examen de I’ objet
étudié : dimensions latérales, périodes spatiales pour les objets de trés grandes dimen-
sions a structure périodique, etc.

Dans la plupart des cas, cette longueur D est tres largement supérieure a la longueur
microscopique d .

Une représentation macroscopique d’un objet est donnée document 3, ou les zones
plus (ou moins) sombres symbolisent une concentration plus (ou moins) forte de
charges électriques.

2.2.3. Echelle mésoscopique

A TI"échelle microscopique, la structure de la matiére est discontinue. Les entités
microscopiques sont considérées explicitement et cette particularité se préte mal a
I’étude de leurs comportements d’ensemble.

A I’échelle macroscopique, la description des objets est imprécise et elle ne permet
pas de prévoir leurs comportements.

Pour lever ce dilemme il est nécessaire d’introduire une troisieme échelle, dite méso-
scopique. Cette échelle, intermédiaire entre 1’échelle microscopique de longueur
caractéristique d et I’échelle macroscopique de longueur caractéristique D,
est définie par une longueur caractéristique € satisfaisant a la double inégalité
d<<€<<D.

Sous réserve de I’existence d’une telle échelle, il sera possible de donner une des-
cription locale des objets étudiés avec les deux avantages suivants :

e comme € >>d, il est possible de définir convenablement la grandeur locale
moyenne des grandeurs attachées aux entités microscopique, puisqu’un volume €3
contient un tres grand nombre de ces entités. Cette opération de lissage ou de nivel-
lement fait de la valeur locale une grandeur variant continfiment. Il est des lors pos-
sible d’adopter une description des objets en termes de milieux continus ;,

o comme € << D, le volume €3 reste trés petit a I’échelle macroscopique, et, de ce
fait, la description locale est une description précise de 1’objet étudié.

Le document 4 résume les propriétés des trois échelles examinées.

A une échelle macroscopique, les distributions de charges (entités micros-
copiques) seront représentées a ’aide d’une grandeur nivelée a une échelle
mésoscopique : la densité de charges.

Doc. 3. Observation a I’échelle macros-
copique.

d

P @ ¥
2 (@)

Doc. 4. Echelles microscopique d,
mésoscopique € et macroscopique D.
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Remarque
La description des distributions de charges en termes mésoscopiques est la seule

qui soit opératoire quand le nombre de charges est élevé. Mais nous perdons toute
information sur le comportement individuel des entités microscopiques et nous devons
nous contenter des lors de leur comportement local d’ensemble.

Application 2

Répartition des charges sur une sphéere olt Nj = 6,02.102 mol~ ! est le nombre d’ Avogadro.
conductrice portée a un potentiel donné Le nombre de protons contenus dans la sphere est donc
. , . N, =ZN =10%.
Le cuivre, de numéro atomique Z =29, de masse p
molaire M = 64 g.mol™ !, a pour masse volumique Le nombre d’électrons est identique si la sphere est
w=289.103kg.m 3. neutre. La charge Q positive portée par la sphere cor-

respond a une diminution de son nombre d’électrons

Une petite sphére de cuivre de rayon a =1 mm est (charges libres), soit :

chargée en la portant au potentiel V=3 000V (au-
dela, le champ électrique de la sphére peut provoquer Ne=N,- % =1022-2.10°.
Uionisation de ’air environnant). La charge apportée est

alors : Constatons que la différence relative de NpetNeest tres

| faible : le milieu est peu perturbé par la charge.
Q = 4ngpaV,on g =9.107SI. o _ .
& Nous pouvons définir une longueur microscopique d en

) attribuant a chaque atome de cuivre un volume de I’ordre
L’apport d’une charge Q entraine une déformation des

nuages électroniques au voisinage de la surface de la de d?, soit :

sphéere. La charge excédentaire apparait ainsi déloca- Nd3 = % na’,
lisée, nivelée localement sur une épaisseur d’exten-
sion caractéristique de [’ordre de 30 nm .

o—

do d = (Ny1e] 3 =023.107%m = 023nm.

Les valeurs numériques proposées dans cet énoncé sont-
elles en accord avec les inégalités liant d,, € et D ? La distance caractérisant 1’étalement de I’excés de charge
nous permet de définir une échelle mésoscopique
€ = 30 nm grande devant d et encore tres faible a
4 u I’échelle macroscopique définie, par exemple, par le
N =Ny (§ 75613) ‘M atomes de cuivre, rayon de la sphere de cuivre : D =a =1 mm.

La sphere contient :

2.3. Charges volumiques
La présence de charges dans un milieu est en général modélisée par une charge
délocalisée, nivelée, décrite par la charge volumique p .

Pour un milieu chargé de volume V, la distribution de charges & est définie par la
donnée de p a I'intérieur de la surface S contenant V (doc. 5).

La charge contenue dans un volume élémentaire d= (petit a ’échelle
macroscopique et de ’ordre de ¢3) est :

dg =pdr. o
La densité volumique p est mesurée en C.m~3. Doc. 5. Distribution volumique de char-
ges.
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2.4. Charges surfaciques

Supposons que la distribution & présente I’aspect d’une nappe chargée : la densité
volumique de charges est non nulle a I’intérieur d’une écorce d’épaisseur & trés
faible a 1’échelle macroscopique d’étude (doc. 6a).

Pour une surface élémentaire dS de cette nappe, la charge portée par le volume
d7="hdS est dg = pd7= phdS.

L’épaisseur & étant tres petite, considérons la représentation limite « & tend vers
zéro a charge dg constante » pour un élément de surface dS donné. Le produit ph,

que nous noterons o, doit &tre maintenu constant en considérant cette description
limite de la distribution & (doc. 6b).

Nous définissons ainsi une distribution surfacique de charges, de densité o . Doc. 6. Ecorce chargée (a) et modélisa-
tion surfacique (b).

La charge portée par une surface élémentaire dS (petite a ’échelle
macroscopique et de ’ordre de £2) s’écrit alors dg = odS .

La densité surfacique de charges o est mesurée en C.m™ 2.

Awpplication 3

Epaisseur de ’écorce chargée Chaque électron excédentaire étant supposé associé a
. . , . . chacun de ces atomes, 1’épaisseur /s est donnée par :
Lorsque la bille de cuivre de I’Application 2 est chargée, p p
les charges excédentaires ont tendance a se répartir au _eN Aldmah)p b= &VM
voisinage de la surface de celle-ci. En considérant les Q= M »soit A= apeNy

valeurs numériques précédentes et en attribuant une

” - ~14
charge élémentaire excédentaire a chaque atome de Numériquement, nous obtenons / = 3.10™ " m.

cuivre de cette couche, obtenir une évaluation de I’épais- Cette valeur numérique est clairement absurde : elle est
seur h . Commenter. largement inférieure a la taille d’un atome de cuivre !
La perturbation du milieu due 2 I'excés de charges Attribuer une charge excédentaire e a chaque atome de
est trés faible. L'épaisseur h doit donc étre faible cuivre de la couche chargée est bien entendu tres exces-
devant le rayon de la bille, de sorte que le volume de sif, mais il est clair que méme en répartissant cet exces
I’écorce chargée est proche de 4ah . sur quelques milliers d’atomes, nous obtiendrons une
Na(4ma2h) épaisseur & extraordinairement faible. La charge surfa-
Cette écorce contient alors ATM atomes de cique semble alors un modele convenable pour décrire
cuivre. la distribution de charges portées par le conducteur.

» Pour s’entrainer : ex. 6 et 8.

2.5. Charges linéiques

Lorsque la distribution de charges & est filiforme, nous définirons de facon ana- ©
logue une distribution linéique de charges le long de la courbe (C) en introduisant
une densité linéique A (doc. 7). @ dg
M _74¢
La charge portée par une longueur élémentaire d{ est dg = A d <. g

La densité linéique A est mesuréeen C.m~ 1. 0

» Pour s’entrainer : ex. 8.  Doc. 7. Charge dg = \d€ en M.
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2.6. Distributions de matiere

La matiere, elle aussi, possede une structure discontinue a I’échelle microscopique
avec les mémes entités microscopiques a savoir les atomes, les ions et les molé-
cules. Nous sommes donc fondés a reprendre (par analogie) les échelles et les modé-
lisations qui ont été introduites lors de 1’étude des distributions de charges. Pour
nos besoins ultérieurs, nous n’expliciterons que la définition de la masse volumique.

La distribution de masses dans un volume V est définie par la donnée de la masse
volumique Y alintérieur de la surface S délimitant V.

La masse contenue dans un volume élémentaire d7 est : dm = udz, la
masse volumique £ est mesurée en kg.m=3,

3 Symétries des distributions de charges

3.1. Symétries usuelles

Les distributions de charges peuvent posséder des symétries. Nous allons exa-
miner quelques propriétés des densités de charges p(M) liées aux symétries élé-
mentaires usuelles.

3.1.1. Symétrie plane

Une distribution est symétrique par rapport a un plan I7si, M et M’ étant
S 2.9 N oz 2.0 y
deux points symétriques par rapport a I1, sa densité de charge vérifie : ')

—_— y
P = pOL). Doc. 8. Distribution invariante par symé-
Le plan I7de symétrie est aussi appelé plan-miroir (doc. 8). trie plane.
En coordonnées cartésiennes, une distribution de charges est symétrique par rapport
au plan I7= (xOy), lorsque : p(x,y,2)=px,y,—2).

3.1.2. Antisymétrie plane

Une distribution est antisymétrique par rapport a un plan I7* si, M et M’
étant deux points symétriques par rapport a I7*, sa densité de charge vérifie :

p(M) = - p(L).

Le plan IT* est appelé plan d’antisymétrie ou plan-antimiroir.
En coordonnées cartésiennes, une distribution de charges admet le plan IT* = (xOy)
comme plan de symétrie, lorsque : p(x,y,z) =—p(x,y,—2) .

3.1.3. Invariance par translation

Une distribution, illimitée dans la direction de ’axe A, est invariante par
translation suivant A si, pour tout point M et son translaté M, sa densité de
charge vérifie : p(M) = p(M’).

En coordonnées cartésiennes, si I’axe (Oz) est pris comme axe A, une telle dis-
tribution satisfait a I’égalité p(x, y, z) = p(x, v, z”) quel que soit z et z’, donc
la densité de charge est indépendante de la coordonnée z: p(x,y) .

Le document 9 illustre ce cas : distribution de charges contenue dans un cylindre
de génératrices paralleles a I’axe (Oz) , invariante par translation parallelement a =
I"axe (Oz) . Notons que tout plan perpendiculaire a cet axe constitue un plande  Doc. 9. Distribution invariante par
symétrie de la distribution.
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Remarque

Nous pourrons aussi rencontrer des cas de distributions invariantes par des translations
discretes le long d’un axe. Ces distributions présenteront un caractere périodique
le long de I’axe, comme Uillustre le document 10.

3.1.4. Invariance par rotation

Une distribution & est invariante par rotation autour d’un axe (Oz) si la densité de
charges est la méme en un point M de la distribution et en tout point M’ obtenu par
rotation d’un angle quelconque de M autour de 1’axe. Notons (r, 6, z)
les coordonnées cylindriques d’axe (Oz) du point M. Pour une telle distribution,
la répartition de charges ne doit pas dépendre de 1’angle 6.

La charge d’une distribution invariante par rotation autour d’un axe (0z)
esttelleque p(r, 0,2) =p(r,2).

Remarquons que tout plan contenant I’axe de révolution (Oz) est un plan de symétrie
de la distribution de charges (doc. 11).

Remarque
Nous pourrons aussi rencontrer des cas de distributions invariantes par des rotations
discretes autour d’un axe. Un ensemble de trois charges identiques occupant les

trois sommets d’un triangle équilatéral est invariant par rotation d’angle o.multiple

entier de 2% autour de I’axe perpendiculaire au plan du triangle et passant par

son centre.

3.2. Distributions a symétries multiples

Nous rencontrerons fréquemment des distributions invariantes vis-a-vis de plu-
sieurs symétries élémentaires. Nous avons déja remarqué que les distributions
invariantes par translation, ou par rotation, possédent une infinité de plans-miroirs.

Nous citerons encore deux types de distributions de charges remarquables par
leur degré de symétrie élevé. L utilisation des propriétés précédentes permet de
démontrer les propositions suivantes.

3.2.1. Distribution a symétrie cylindrique

La distribution a symétrie cylindrique est invariante par translation parallelement a un
axe noté (Oz) (tout plan perpendiculaire a I’axe (Oz) est plan de symétrie), et elle est
de révolution autour de cet axe (tout plan contenant I’axe (Oz) est plan de symétrie).

Utilisant les coordonnées cylindriques d’axe (Oz), nous avons (doc. 12) :
Distribution a symétrie cylindrique : pr,0,z)=p[).

3.2.2. Distribution a symétrie sphérique
La distribution a symétrie sphérique est invariante par rotation autour de tous les
axes passant par le centre de symétrie.

Remarquons, de plus, que tout plan contenant I’origine est plan de symétrie de la
distribution.

Utilisant les coordonnées sphériques r, 6 et ¢ avec 1’origine au point centre de
symétrie, nous avons (doc. 13) :

Distribution a symétrie sphérique : p (r, 0, ¢) =p (r).

» Pour s’entrainer: ex. I, 2, 3,4, 5et 7.

Doc. 10. Distribution invariante par

Z
|
- [
2 |
|

— ==

Doc. 11. Distribution invariante par
rotation autour d’un axe (0z).

Doc. 12. Distribution a symétrie cylin-
drique.

Doc. 13. Distribution a symétrie sphé-
rique.



1. pistributions de charges

A CQ F R

@ CHARGE ELECTRIQUE

* 'unité de charge est le coulomb, noté C .

* Les charges observées sont toujours des multiples entiers de la charge élémentaire e (e = 1,602.10719C) :
la charge électrique est quantifiée.

* Pour un systeme fermé, c’est-a-dire n’échangeant pas de matiere avec I’extérieur, la charge électrique
reste constante.

@ DISTRIBUTION DE CHARGES

A une échelle macroscopique, les distributions de charges (entités microscopiques) seront représentées a
I’aide d’une grandeur nivelée a une échelle mésoscopique : la densité de charges.
® Charges volumiques
La charge contenue dans un volume élémentaire dzest :
dg=pdr.
La densité volumique p est mesuréeen C.m™ .

® Charges surfaciques

La charge portée par une surface élémentaire dS s’écrit :

dg=0dS.

La densité surfacique o est mesurée en C.m™2.

® Charges linéiques

La charge portée par une longueur élémentaire d¢ est :
dg=Ad¢.

La densité linéique A est mesurée en C.m™! .

@ SYMETRIE DES DISTRIBUTIONS

* Une distribution est symétrique par rapport a un plan /7si, M et M’ étant deux points symétriques par
rapport a I, sa densité de charge vérifie :

pM) = p(M") .

* Une distribution est antisymétrique par rapport a un plan I7T* si, M et M’ étant deux points symétriques par
rapport a I'T*, sa densité de charge vérifie :

pM)=—p(M) .

* Une distribution, illimitée dans la direction de ’axe A , est invariante par translation suivant A si, pour tout
point M et son translaté M, sa densité de charge vérifie :

pM) =p(M) .
* Une distribution est a symétrie cylindrique (coordonnées cylindriques d’axe (Oz)) si :
pr,0,2)=p).
¢ Une distribution est a symétrie sphérique (coordonnées sphériques au centre de symétrie) si :
p(r, 0,9 =p(r).

13
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Contrite rapide

v’ Citer trois propriétés de la charge électrique.

v’ Citer les trois échelles de description et d’étude de la matiére.

¢’ Quels sont les caractéristiques d’une description des objets a 1’échelle mésoscopique ?

v’ Citer trois grandeurs caractérisant les distributions de charges décrites a 1’échelle mésoscopique.

v Lors de I’étude des propriétés de symétrie d’un objet, quelles sont les invariances qu’il convient d’examiner ?
v’ Quels sont les éléments de symétrie d’un doublet de charges ponctuelles opposées + g ?

Du tac au tac (Vrai ou faux)

I. Un cylindre de hauteur h est invariant 4. Une distribution volumique de charges suivant
par translation le long de son axe. une loi de la forme p(r) (r = 0) est une distri-
Q Vrai O Faux bution a symétrie cylindrique ou sphérique.
4 Vrai O Faux
2. La charge volumique p(M) est une grandeur
quantifiée. 5. Une distribution volumique de charges suivant
Q Vrai O Faux une loi de la forme p(z) est une distribution a
symétrie cylindrique.
3. Un ensemble de trois charges ponctuelles Q Vrai O Faux

quelconques ne présente aucun élément
de symétrie.

4 Vrai O Faux P Solution, page 16.



Exercices

1. pistributions de charges

4

- Cerceau chargé

Quelles sont les symétries de y
la distribution circulaire uni-

forme ci-contre ?
+A

Q

®
=

% Spheére uniformément chargée

Soit une sphere de rayon a, de centre O, portant une réparti-
tion surfacique uniforme de charges o .
Quelles sont les symétries de cette répartition de charges ?

3

*—.. Cube chargé

Soit un cube d’aréte a. Les B B
faces ABCD et A’B’C’D’ i
portent des charges surfa- |4 : A =
ciques uniformes opposées e e
oet —o. *43_%_47
Quelles sont les symétries de g// /Q— B bt o
cette distribution ? i

D D’

é;, Spheére polarisée

Une sphere de rayon a porte la densité surfacique de charges :
o = 0y cos 0

en coordonnées sphériques de centre O confondu avec le

centre de la sphere.

Quelles sont les symétries de cette distribution ?

5

Un cylindre infini d’axe (Oz), z
comportant une partie cylin-
drique évidée d’axe (O’z),
porte une charge volumique
p uniforme.

Cylindre chargé avec cavité

Quelles symétries peut-on
attribuer a cette distribution
de charges ?

é,zModélisation d’une densité surfacique
de charges

Nous avons supposé au § 2.4. que la répartition de charges
était uniforme a I’'intérieur de 1’écorce d’épaisseur 4 , ce qui
n’est pas nécessaire. Considérons par exemple un milieu occu-
pant le demi-espace z < 0, chargé au voisinage de sa sur-
face avec la densité volumique p = pg exp (%) , ol /i estune
distance petite a 1I’échelle macroscopique.

1) Pour quelle profondeur z
la couche comprise entre
z=0 et z = z( contient-elle Po

90 % de la charge portée par | 0 L p
le milieu ?

2) Définir la densité surfa-
cique de charges o équivalente.

3) Commenter la situation
limite pg—>© et h =0,
avec poh = oy = cte.

Z‘"" Hélice infinie

Le schéma ci-dessous représente une hélice d’axe (Oz),
correspondant a I’ensemble des points de coordonnées carté-
siennes :

x=RcosB, y=Rsin0, z= % (hélice gauche)

lorsque 6 varie de 6y 2 Opax -

Cette hélice porte une densité linéique de charges uniforme A .
Quelles symétries suggere une telle distribution ? Examiner
le cas d’une hélice infinie.

§w Modélisation d’une densité linéique
de charges

Un tube cylindrique, a section circulaire de rayon a, est chargé
uniformément avec la densité volumique p.Lerayon a étant
petit a I’échelle macroscopique, on modélise le tube par un
fil portant la densité linéique A.Exprimer A en fonction de
p et a.

15
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Corrigés

Solution du tac au tac, p. 14. 3. Faux;
l. Faux ; 4, Vrai;
2. Faux; 5. Faux.

1 Les plans (xOy) et (xOz) sont des plans-miroirs de la distribution : ce sont

des plans de symétrie des charges.
Le plan (yOz) est un plan-antimiroir : ¢’est un plan d’antisymétrie des charges.

%‘(v Tout plan passant par le point O centre de la sphére est un plan de symétrie de

charges et tout axe passant par O est un axe de révolution.

S

el
du cube est un plan d’antisymétrie (schéma a) (P = IT¥).

Les plans Py, Py, Pyet Py (P; = II;) indiqués sur le schéma b) sont des plans
de symétrie de charges.

Le plan P parallele aux deux faces considérées et passant par le centre O

a) P b)
AB A'B’

BB’
P>

Ox

DD’ cC’
@4 @1 93

CD C'D’

é::,,x La densité surfacique de charges 4

ne dépend pas de I'angle ¢ : la distribu-
tion est invariante par rotation autour de
I"axe (Oz). Changer fen m — 6 inverse
le signe de o ; le plan (xOy) = IF¥, cor-
respondanta: 6= % ,estun plan d’an-

tisymétrie de cette distribution de charges.

5

et Cette distribution est invariante par translation parallelement a I'axe (0z).

Le plan (xOz), qui contient I'axe (0'z) de la partie évidée, est un plan-miroir de la dis-
tribution ; ¢’est un plan de symétrie de la distribution de charges. La distribution n’est
pas invariante par rotation autour de I'axe (0z) si 0" est différent de O .

S

-
geable au-dela de la profondeur /1 :

.~ 1) Constatons que la densité volumique de la charge devient rapidement négli-

Po Po
p=po pour z=0; Po=3 pour z == (L6)h SP0= 000
pour z=—"Th.

La charge comprise dans un volume cylindrique d’axe (0z) , de base d § et d’épais-
seur |zl est:

0 Z
do =fz p(z)deFpﬂh[l-eﬁ]dS avec Z2<0 .

Elle vaut d Qi =po h dS si I'épaisseur est infinie et 90 % de cette valeur pour
Z=1z0=—hln(10) = —23h. Nous voyons ainsi que I'essentiel de la charge du
milieu est dans une épaisseur de 1'ordre de grandeur de /.

2) La répartition peut donc étre considérée comme surfacique si /i est assez faible :

0
0dS=f_wp(z) dS dz=pghdS, soit a=pgh .

3) Cette situation limite n’est qu’une idéalisation du cas envisagé, et o coincide
avec la densité surfacique de charges définie précédemment. Notons que 1'écriture
h =0 n’ade signification qu’a I'échelle macroscopique : h est de I'ordre de
{ (longueur mésoscopique) .

2

-

« invariance par translation, parallelement a Iaxe (0z), d’une longueur multiple entier
du pas p de I'hélice ;

Nous pouvons penser aux symétries suivantes :

* symétrie par rapport a un plan contenant I’axe (0z), ou plus généralement symétrie
de révolution autour de (0z) ;

+ symétrie par rapport a un plan perpendiculaire a I"axe (0z), coupant I'hélice en deux
parties de longueurs égales.

De fait, un examen plus attentif nous montre que I’hélice finie ne possede aucune de
ces symétries élémentaires.

L'hélice infinie ne possede que la premiere des trois symétries évoquées précédemment.

§~»» Un élément d¢ de longueur du fil : ! : .
porte la charge : dg=Ad{ etunélément de ' 0
longueur du tube porte la charge -l
dq = pratde.
En comparant les deux expressions de la
charge élémentaire, on en déduit que
A=pnat. T
dt
~—




Champ
électrostatique

fourgue
is toris

Apres avoir jeté les bases de la théorie

de la résistance des matériaux (1773),

étudié le frottement solide (1779),

puis décrit les lois de la torsion (1784),
Charles-Augustin Coulomb (1736-1806)

met au point une balance de torsion tres sensible
qui lui permet de décrire l’interaction

entre particules chargées statiques.

La loi qu’il énonce en 1785, et qui porte son nom,
a depuis été vérifiée avec une précision croissante.

Le champ électrostatique

est la grandeur qui permet de décrire

les effets de charges électriques statiques
sur ’espace qui les entoure.

OBJECTIFS

B Interaction électrostatique.
B Champ électrostatique.
B Propriétés de symétrie.

PRI’EREQUIS

B Distribution de charges :
e modélisations ;
e symétries.
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Awpplication 1

I Loi de Coulomb

I.1. Force d’interaction entre charges statiques

Deux charges ponctuelles q| et g, ,immobiles aux points M| et M, , exercent I’'une
sur I”autre une force :

o proportionnelle au produit des charges ;

* inversement proportionnelle au carré de la distance les séparant ;

o dirigée parallelement a M| M, .

Cette force est répulsive si les charges sont de méme signe, attractive sinon.

La force de Coulomb exercée par la charge ¢; sur la charge ¢, (les deux
Q9 €12
4ng (M, M2)2

charges étant dans le vide) est f . » =

€1 o désigne le vecteur unitaire dirigé de M; vers M, (doc. 1).

Elle est opposée 2 la force exercée par gy sur ¢ : f 1 -2 =—f 21 ; elle obéit au
principe de 1’action et de la réaction.

Notons [’analogie formelle avec la loi d’attraction gravitationnelle, en remplacant
les masses gravitationnelles m | et m, par les charges g et g, , et la constante de
gravitation changée de signe — G par la constante d’interaction électrostatique

L =-Gmm i
Ty . —_ — 2 .
4me, (M M,)
La constante ¢, permittivité électrique du vide, est voisine de ﬁ et se
wl

mesure en F.m~1, F désignant le farad (unité de capacité).

La permittivité électrique & de I’air étant trés voisine de £ (¢ = &g &, , avec
g, =1,0006), 1a loi de Coulomb reste valable dans I’air.

Intensité des forces électrostatiques
et gravitationnelles

1

et -
4me

= [force X distance? X charge~

M(q)

7 fi-a

M(q1) 7 /
€12

forei
Doc. 1. Forces d’interaction électro-
statique entre deux charges statiques
(q192 > 0).

My (m,)
_ //"/ ./;;~2
-2 -~
Mom) T2

Doc. 2. Forces d’interaction gravita-
tionnelle entre deux masses statiques.

7]

La constante de gravitation vaut G=6,67.10~11SI.
La constante d’interaction électrostatique vaut :

1 _9.10%s1.

4me
1) Précisez les unités du Systeme International cor-
respondant a ces deux constantes.

2) Comparer les interactions gravitationnelles et
électrostatiques entre deux électrons.

Données : charge —e = —-1,6.10~ 19C ef masse
m=9,1.10"31kg.

2 nous avons :
= [force X distance? X masse™ 2]

=kg l.m3.s72

1) Une force s’exprimanten kg.m.s~
(G]

=kg.C~2.m3.s72.
En réalité, £y s’exprime en farad par metre, ot le farad

est une unité de capacité et la constante précédente
s’évalue en F-l.m .

2) La dépendance de ces interactions en fonction de la
distance séparant les deux électrons étant la méme pour
les deux interactions, nous avons simplement :

E:(E)z L) =42.10¢,
Fo ) \ameG

o

Cet ordre de grandeur justifie que pour I’étude de mou-
vements de particules chargées, il est en général tout a
fait inutile de prendre en compte les forces de gravitation.




1.2. Champ d’une charge ponctuelle

La force exercée par g sur g, se met sous la forme :

i =B (M), avee E, (M) = 1 MM
- ’ 4me M1M23

E| (M) est le champ électrostatique créé par la charge ¢ (charge source) au point
M, dans le vide (ou dans 1’air).

Le champ créé par g caractérise I’influence de celle-ci sur I’espace qui I’entoure.

Ainsi, le champ électrostatique créé dans 1’espace par une particule de charge
¢ , immobile au point origine O du repere de coordonnées sphériques, a pour
expression (doc. 3) :

2o 4 € g P _ 4 OM .
E0)= dney r2 = ey 13 = dney op®

2 Champ d’une distribution

2.1. Principe de superposition
L’expérience conduit a postuler que les interactions électrostatiques ont des effets

linéaires.

Par exemple, la force subie par une charge ¢ de la part d’un ensemble de N charges
q1-92,---,qy estlasomme des N forces qu’exercent individuellement les charges
q;(i=1,...,N)lorsqu’elles sont mises seules en présence de la charge g . Le champ
créé par les N charges est donc la somme des N champs créés par chaque charge.

Nous postulons donc la linéarité des effets, ce qui constitue le principe de
superposition.

2.2. Champs créés par des distributions de charges

2.2.1. Charges ponctuelles

Utilisant le principe de superposition, nous avons immédiatement :

Le champ électrostatique E créé en M par diverses charges g; situées aux
points P; est donné par :

N pAf
. 1 PM

E@i,i=1,..,nM)= dne, Elqt T
i

2.2.2. Généralisation aux distributions de charges

Nous appliquerons le principe de superposition a une distribution de charges & apres
I’avoir décomposée en un ensemble de fragments élémentaires chargés (mésoscopiques)
assimilés a des charges ponctuelles.

2. Champ électrostatique

h T E(M)
\ //

¥ N
A T T

Doc. 3. Champ d’une charge ponc-
tuelle (q > 0).

Doc. 4. Distribution de charges ponc-
tuelles.

Doc. 5. Distribution de charges & .
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Notons P un point décrivant 1’espace occupé par la distribution. Une partie
élémentaire de 9, située au voisinage de P, contient une charge dg p et crée un
champ élémentaire dE au point d’observation M. Nous obtenons le champ total
créé en M par la distribution & par superposition des champs de chacune de ses
parties élémentaires selon :

— 1 €pom_ 1 PM
EoM)= 1~ 2 d = > d
M) = gy y 2 P pa2 ~ dmey p2g Y pard

On écrira cette expression plus rigoureusement sous la forme :
431:60 f f M3 dap .-

I nous reste a préciser I’élément d’intégration dgp en fonction de la nature de la
distribution considérée.

EqM)=

2.2.2.1. Distribution volumique

Un volume élémentaire d7 contient une charge :

dgp = pp)d7;
nous écrivons donc :

B -1 PM_
Ea D= g, f f f PO oo T
9]

2.2.2.2. Distribution surfacique

Une surface élémentaire dS contient une charge :
qu = O'(P)dS N

et le champ créé en M par & est :

EqM)= dne,

é f G(P)% ds.

2.2.2.3. Distribution linéique

Une longueur élémentaire d/ contient une charge :
dq Pp= )\(p)df s
soit :



2.3. Le champ électrostatique est-il toujours défini ?

Les expressions précédentes ne sont a priori applicables qu’aux cas des distribu-
tions d’extension finie (distributions physiques), pour assurer la convergence des
intégrales. Il existe toutefois des cas de distributions d’extension infinie pour les-
quels ces intégrales convergent.

Dans le cas d’une distribution volumique de charges p (P) finie, d’extension quel-

2. Champ électrostatique

conque, I’'intégrale :

Eon= 1 PM
Ey (M) = Imeg ff p(P)Wdt

converge toujours, quel que soit le point M .

Il n’en est plus de méme pour les distributions surfaciques et linéiques : le champ

E (M) n’est pas défini sur ces distributions.

Prenons I’exemple de I’Application suivante.

Awpplication 2

Champ créé par un segment
uniformément chargé

Sur l'axe Ox, une charge est répartie uniformément avec
la densité linéique A entre les points A’(— a) et A(a).
Déterminer le champ E (M) créé par cette distribution
enunpoint M de l'axe (Ox), extérieur au segment A’A.

A (o) P A M x
L 1 1 1 1 .
1 1 1 1 1 -
-a 0 X a X
Doc. 6.

Notons x I’abscisse du point M et X I’abscisse d’un
point P pris sur la distribution de charges. Associons
au point P la charge élémentaire dgp=AdX.

En un point M tel que x > a, la charge dgp crée en
M le champ élémentaire :

7 1 AdX o
dE = . S
deg (x—x)* *

En superposant les champs créés par chacune des par-
ties élémentaires de la distribution, il vient :

_ . Cx a)
21‘580 x2 - az

expression valable pour x > a.
En revanche, en un point M tel que x < - a, le champ
élémentaire dE est dirigé vers les x négatifs :

7_ __1 AMX
e dme (x—X)2 Cx

et I’intégration conduit alors a :

-

T — Aa €x
EM)= -0 @)

expression valable pour x < —a.

A noter : Quand x tend vers a ou —a, nous consta-
tons que les expressions (1) et (2) tendent vers I'infini,
preuve que le champ n’est pas défini par ces expressions
sur la distribution.

» Pour s’entrainer : ex. .

21
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Dans I’ Application précédente, il est impossible de calculer le champ électrique en
un point du segment AA’ .

Il en est de méme lors d’une distribution surfacique de charges (cf. Application 8).

Rappelons que ces modélisations linéiques et surfaciques n’existent que parce que
localement la densité volumique de charge p est trés grande, voire « infinie ».

C’est le caractere « infini » de p qui nous interdit de définir le champ électrosta-
tique en un point d’une distribution linéique ou surfacique.

Le champ électrostatique en un point des sources n’est pas défini lorsque

ces sources sont modélisées par une densité surfacique ou linéique des
charges.

3 Topographie du champ

3.1. Lignes de champ
3.1.1. Définition

Le champ est continuellement tangent a des courbes appelées lignes de champ
(doc. 7). Ces lignes sont orientées par le sens du champ.

3.1.2. Mise en évidence expérimentale des lignes de champ

La visualisation des lignes de champ électrostatique peut s’obtenir en saupoudrant
des particules isolantes, neutres (grains de semoule ou graines légeres) a la surface
d’un fluide dans lequel (et a la surface duquel) existe un champ électrique E .

Ces particules ont la propriété de s’aligner parallélement au champ E grice 2
I’apparition d’une dissymétrie de charges due au champ E (doc. 8).

La répartition des charges permet de plus aux grains de s’aligner les uns derrieres
les autres en « suivant » les lignes de champ (les charges de signes opposés
s’attirent).

La présence du liquide permet aux grains de s’orienter plus « facilement » que
sur une surface solide.

Chaque particule est alors assimilable a un élément aM parallele au champ local
enM .

Sur le document 9, nous visualisons des lignes de champ par ce procédé.

3.1.3. Equation d’une ligne de champ

La définition des lignes de champ nous permet d’affirmer qu’un élément de lon-
gueur dM le long d’une ligne de champ est parallele au champ E . L’équation dif-
férentielle (vectorielle) d’une ligne de champ est donc :

dM NE =0 .

22

ligne de champ

Doc. 7. Ligne de champ.

Doc. 8. Matérialisation d’une ligne
de champ.

Doc. 9. Entre deux plaques paralléles,
un liquide isolant supporte des graines
tres légeres. Lorsque les plaques sont
sous tension, les graines sont alignées
selon la direction du champ électrosta-
tique.



Nous obtiendrons la ligne de champ issue d’un point initial donné par intégration
de cette équation différentielle.

Par exemple, en coordonnées cartésiennes, nous écrirons :

de _dy _dz

E,~ E, " E,

3.2. Tube de champ

L’ensemble des lignes de champ s’appuyant sur une courbe fermée (ou
contour) C engendre une surface & appelée tube de champ, représentée sur
le document 10.

3.3. Points de champ nul, points singuliers

Deux lignes de champ ne se coupent pas en un point M ou le champ électrostatique
est défini et non nul (doc. 11) ; sinon la direction du champ, donc le champ lui-méme,
ne serait pas défini en ce point.

Deux lignes de champ peuvent se couper en M si :

* le champ est nul au point M : M est appelé point de champ nul (ou point
d’arrét) ;

¢ le champ n’est pas défini au point M : il y a une charge ponctuelle en M, ou bien
M appartient a une surface ou a une ligne chargée.

Quelques lignes de champ d’un systéme de deux charges ponctuelles g et Q sont
représentées sur les documents 12a (cas Q =2q > 0)et 12b(cas Q = -2¢g <0).

Nous pouvons observer que les lignes de champ divergent a partir des charges posi-
tives, convergent vers les charges négatives, ou « aboutissent » a I’infini. Elles se
coupent au niveau des charges ainsi qu’aux points de champ nul A et A’

2. Champ électrostatique

lignes de champ

contour C

tube de champ (¥)
Doc. 10. Tube de champ.

Doc. 11. En M, le champ E est soit

nul soit non défini.

_2q

K\ %10
1.2

Doc. 12. Lignes de champ d’un systéme de deux charges ponctuelles q et Q.
a. 0=12q. b. 0=-2¢q.
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Application 3

Sur le document 12, il apparait que le champ est nul en
A eten A’. Déterminer les abscisses de ces points en
fonction de a .

Notons (Ox) I’axe portant les charges et choisissons
I'origine O a égale distance des charges dont les abs-
cisses sont a pour la charge Q et —a pour la charge
q . Les points d’arrét sont sur I’axe (Ox) puisque les
champs des deux charges doivent étre colinéaires afin
de pouvoir s’annuler.

En un point d’arrét d’abscisse —a <x <a, nous avons :
q
(x— a)2 (x+ a)2
d’ot I’équation du second degré :
Q-9 +2a(Q+q)x+(Q@-9)a=0 (1)
dont le discriminant réduit est : A’ =4(Qgq. Le point
d’arrétn’existe que si Q et ¢ sont de méme signe donc
ici Q =2q.L’équation (1) s’écrit alors :

X +6ax+al=0.

La solution comprise entre —a et a est:
x=(=3++v8)a=-0,172a.
De méme, hors de cet intervalle, les points d’arrét satis-
font a la relation :
Q + q =0
(x—a) (x+a)
ce qui conduit a I’équation du second degré :

Q+)x*+2a(@-q)x+(Q+q)a=0 (2)
dont le discriminant réduit est cette fois : A* = -4 Qq.
Le point d’arrét n’existe que si Q et g sont de signes
contraires.

Donc Q =-2g¢ et’équation (2) s’écrit encore :
¥ +6ax+a*=0.
La solution extérieure a [—a, a] est cette fois :
x=(-3-+v8)a=-5,83a.
La vérification de ces résultats peut étre effectuée direc-
tement sur les simulations du document 12.

» Pour s’entrainer : ex. 10.

4 Propriétés de symétries du champ

4.1. Utilisation des symétries et antisymétries

Le calcul du champ a partir des intégrales est souvent assez pénible. Il convient alors
d’utiliser les symétries des distributions, quand elles existent, pour le simplifier.

Certaines simplifications (éliminations de certaines coordonnées du point de
calcul M, annulation de composantes du champ...) peuvent alors étre effectuées
sans aucun calcul, a I’aide de considérations de symétries ; c’est pourquoi nous
étudions ici les propriétés de symétrie et d’antisymétrie du champ électrostatique.

4.2. Symétries élémentaires

4.2.1. Symétrie plane
Soit une distribution & invariante par symétrie plane & par rapport a un plan I7.

En un point M du plan de symétrie, considérons les champs élémentaires dEp(M)
et dEp(M) créés par les deux éléments de méme volume d7 associés aux points
Pet P’ =%(P).Leur somme dE p + dE p- est un vecteur paralléle au plan IT .
Cette propriété est valable pour tous les couples de points symétriques P et P’ qui
décrivent I’ensemble de la distribution. Par conséquent :

Sur un plan-miroir IT d’une distribution de charge & , le champ élec-
trostatique créé est parallele au plan IT.

24

a)

b)

I

vy

Doc. 13. Symétrie plane.

a. Contributions élémentaires de P et P’.

b. Champ total sur le plan-miroir.




Application <

Symétrie plane et champ électrostatique

d’une distribution, lorsque le point M occupe une

Doc. 14. Symétrie plane et champ électrostatique.

A 'aide d’un raisonnement analogue au précédent, Le document 14 met en évidence la propriété recher-
comparer le champ électrostatique en un point M et chée : le champ E’ au point M’ est le symétrique vec-
en son symétrique M’ par rapport au plan-miroir I1 toriel du champ E au point M .

position quelconque dans [’espace. Le résultat précédent est ainsi vérifié.
=4 Er B 5
dE 'P di” P \ /
M M
a) b)

2. Champ électrostatique

De méme (cf. Application 4), nous pouvons vérifier que :

Aux points M et M’ symétriques par rapport a un plan-miroir I7 d’une
distribution de charges & , les champs électrostatiques E et E’ sont
symétriques I’un de ’autre.

Remarque : Dans I’ Application 2, nous vérifions également que E(x) =—E(—x)
pour lxl>a.

4.2.2. Antisymétrie plane

Pour une distribution & possédant un plan d’antisymétrie I1* et pour un point
M de ce plan, il suffit de changer le sens du champ élémentaire dEp- dans les
raisonnements précédents. Nous avons alors (doc. 15aetb) :

Sur un plan-antimiroir IT* d’une distribution & , le champ électrostatique
créé est perpendiculaire au plan I'T* .

Plus généralement, en reprenant I’Application 4, nous pouvons aussi affirmer
(doc. 15¢) :

Au point M’ symétrique du point M par rapport au plan-antimiroir IT*
d’une distribution de charges &, le champ électrostatique E” est ’opposé
du symétrique du champ E créé par la distribution en M .

Exemple de plan-miroir 11
Sur le document 16a, quatre charges ponctuelles sont placées dans le plan (xOy)

—q en(2,2)et(-2,2),2qen(1,-1) et (- 1,-1). Le plan (y Oz) est plan-miroir
de cette distribution. Quelques lignes de champ ont été tracées sur le plan (xOy).
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dEp

a.

Doc. 15. Antisymétrie plane.

Nous constatons que les lignes de champ qui approchent le plan (y Oz) lui sont en
général tangentes : sur le plan-miroir, le champ électrostatique est tangent au plan.
Notons qu’au point A, ou se coupent quatre lignes de champ perpendiculaires, deux
de ces lignes sont perpendiculaires au plan-miroir. Ceci ne contredit pas 1’appar-
tenance du champ a ce plan, car le point A est un point de champ nul. Le point A’
est un autre point de champ nul.

Comme nous 1’avons vu précédemment, en deux points M et M’ symétriques par
rapport au plan (yOz), les champs électrostatiques E et E” sont symétriques.

Exemple de plan-antimiroir IT*

Sur le document 16b, quatre charges ponctuelles sont placées dans le plan (xOy) : q
en(2,2),—-qen(-2,2),-2qgen(1,-1)et2qen (- 1,-1). Le plan (yOz) est
plan-antimiroir de cette distribution. Quelques lignes de champ ont été tracées sur
le plan (xOy).

Les lignes de champ coupent le plan (yOz) perpendiculairement : sur le plan-
antimiroir, le champ électrostatique est orthogonal au plan.

Notons qu’au point A se coupent quatre lignes de champ non perpendiculaires a
(yOz). Le point A est un point de champ nul, et le caractere orthogonal a (yOz) du
champ n’est pas mis en défaut.

Plus généralement, au point M’ symétrique de M par rapport au plan (yOz),
le champ électrostatique E” est 1’opposé du symétrique du champ E en M .

» Pour s’entrainer : ex. 2.

E

!

Doc. 16a. Symétrie des champs électrostatiques E et E’
par rapport au plan de symétrie Il = (y, O, z).
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Doc. 16b. Le champ électrostatique E’ est [’opposé du symé-
trique de E par rapport au plan d’antisymétrie IT* = (y, O, 7).



4.2.3. Invariance par translation

Lorsqu’une distribution & est invariante par une translation de Az parallélement a
I’axe (Oz), un observateur percevra la méme distribution s’il est au point de coor-
données cartésiennes (x, y, z) ou en un point translaté du précédent de coordon-
nées (x, y, z + nAz), ol n est un entier. Le champ sera donc identique en ces deux
points :

E(x,y,z+nAz)=F(x,y,z) (doc. 17).

2. Champ électrostatique

Application J

Distribution invariante
par translation parallélement a un axe

Indiquer la forme du champ électrostatique créé par
une distribution invariante par toute translation
parallelement a (Oz).

L’invariance par toute translation implique que
le champ est le méme en tous points de coordonnées
(x, ¥, z) quelle que soit la valeur de z, donc

Lo-v

Doc. 17. Distribution invariante par

translation.

Remarque

Cette forme est simplifiée, mais ne constitue pas la forme
la plus générale du champ créé par une distribution inva-
riante par translation. Le cas d’un champ électrosta-
tique est en fait plus restrictif : le champ statique E
posséde des propriétés supplémentaires, que nous n’ex-
ploitons pas ici, qui font que les composantes E, (x, y)
et Ey(x, y) ne sont pas indépendantes. Nous revien-
dronms sur ce point au chapitre 3.

Exy2d)=E (xy).

Tout plan perpendiculaire a I’axe (Oz) est un plan de
symétrie de la distribution, et, sur ce plan, le champ
est parallele au plan.

Finalement, le champ est de la forme :
E@yd=E@®Yy) =E®xy)E+Ex)E,.

Doc. 18. »
Distribution invariante par translation
parallélement a un axe.

Considérons maintenant une distribution & invariante par une rotation # d’angle
2 . , ( .
o= 7“ (n entier) autour de 1’axe (0z). Deux observateurs placés aux points

Met M’ =R (M) percevront la méme distribution (le document 19 a été tracé
avec n=06).
Les champs électrostatiques détectés aux points M et M’ ont les mémes

composantes dans les systémes de coordonnées (Ox, Oy, Oz) et (R (0x), & (Oy),
R (0z)) respectivement.

Le champ au point M’ est ainsi le méme qu’au point M, a une rotation d’angle o
autour du vecteur €, pres.

Doc. 19. Distribution invariante par
rotation.
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Application o

28

Champ d’une distribution de symétrie
de révolution

Indiquer la forme du champ d’une distribution pos-
sédant la symétrie de révolution par rapport a [’axe
(02).

Pour une distribution de révolution autour de 1’axe
(Oz), tout plan contenant cet axe est plan de symé-
trie, donc en coordonnées cylindriques, la compo-
sante orthoradiale Eg est nulle :

E(r,0,2)=E.(r,0,2€,+E,(r,0,2)¢,.

Linvariance par rotation d’un angle quelconque autour
de I’axe (Oz) indique de plus que les coordonnées
cylindriques du champ ne dépendent pas de 6.
Ainsi, le champ d’une distribution a symétrie de révo-
lution par rapport a I’axe (Oz) a la forme :

E(r,0,2)=E.(r,2)€,+E,(r,2)€,.

Notons que le vecteur champ dépend encore de I’angle
0 par I’orientation de €, .

Remarque : De méme que pour I’Application 5, signa-

lons que les composantes E, (r, z) et E,(r,z) d'un Doc. 20. Champ d’une distribution a symétrie de révo-
champ électrostatique ne sont pas indépendantes. lution : E est dans un plan contenant 'axe 7’z .

4.2.5. Le champ électrostatique est un vecteur polaire

Les études précédentes nous amenent a une conclusion simple : lors d’opéra-
tions de symétrie (symétrie plane, translation, rotation autour d’un axe) appli-
quées a la distribution de charges & , le champ électrostatique subit la méme
opération.

Nous appelons vecteur polaire un vecteur dont le champ a les mémes propriétés
de symétrie que ses sources.

Pour qualifier cette propriété, nous trouvons aussi le terme « vrai vecteur », par
opposition a « pseudo-vecteur ».

Nous reviendrons sur cette distinction lors de I’étude du champ magnétique.

Le champ électrostatique est un objet tridimensionnel ayant les propriétés
de symétrie d’un vecteur polaire ou « vecteur vrai ».

Cela signifie qu’il a les mémes propriétés de symétrie que la distribution des
charges qui le créent.

Le terme « opération de symétrie »
désigne ici une isométrie, c’est-a-
dire un déplacement qui laisse
inchangées les distances.




Application 7

5 . . .
Champ dune creontérence chargée .y asta Mmoot _m
; 3 43'580 I 280 p2 280 (Z2 +R2)3/2
Etant donné une circonférence, de centre O, de rayon
R, uniformément chaigée avec la densité linéique A, En conclusion, le champ créé s’établit a :
déterminer le champ E (M) en un point M de son axe. — AR z .
2¢ (12 N R2)3/2 T

L’axe du disque est un axe de révolution pour la dis-
tribution de charges. Une rotation autour de cet axe z
conserve le champ en chacun de ses points, donc :

EM)=E;¢, . Eov)
Soit (R, 0) les coordonnées polaires d’un point P de 62
la circonférence. L’ élément de longueur associé¢ a P
porte la charge élémentaire dg = ARd @ ; le champ M
élémentaire associé s’écrit :

dE’ — ARdO 2 o

dquegp? ~ 7
avec p=PM et ¢ vecteur unitaire de I’axe PM. ¢:10
D’ou la composante axiale de ce champ élémentaire : o » ¢ Y
dE, =dE.2,= AR ©5(@) 49 P
4meg p2 =

et, par intégration sur la circonférence : Doc. 21. Champ d’une circonférence chargée.

2. Champ électrostatique

4.3. Symétries multiples

Ces cas correspondent a 1’existence de plusieurs symétries élémentaires. Les cas
de distributions invariantes par translation parallelement a un axe ou de révolution
autour d’un axe en font partie.

Citons encore deux cas de symétrie élevée que nous traiterons comme application
directe de I’utilisation des propriétés de symétrie élémentaires :
¢ le champ d’une distribution a symétrie cylindrique d’axe (Oz) (1a répartition de
charges n’est fonction que de la distance a 1’axe (Oz)) est, en coordonnées cylin-
driques, de la forme E (1, 6,z) = E(r)e,;
¢ le champ d’une distribution a symétrie sphérique de centre O est, en coordonnées
sphériques, de la forme E (1, 6, ¢) =E(r) e, .

» Pour s’entrainer : ex. 3 et 4.

4.4. Discontinuités du champ a la traversée
d’une distribution surfacique

Nous avons déja signalé que le champ électrostatique n’était pas défini sur les dis-
tributions surfaciques. En outre, a la traversée d’une surface électrisée, de la face
@ vers la face (D), la composante normale du champ subit une discontinuité et
la composante tangentielle est conservée (doc. 22).

Doc. 22. Discontinuités du champ a
la traversée d’une distribution sur-
facique.
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Awpplication §

Champ d’un disque uniformément chargé

Déterminer le champ E (M) en un point de I’axe d’un
disque de rayon R uniformément chargé avec la den-
sité surfacique o uniforme.

L’axe du disque est un axe de révolution pour la dis-

tribution des charges donc, comme cela a été vu dans

I’Application 7, le champ est colinéaire a cet axe :
EM)=E,(2)E;.

Notons (r, 8) les coordonnées polaires d’un point P

du disque et d2S=drrd @ 1’élément de surface (infi-

niment petit d’ordre deux) associé en coordonnées

polaires (doc. 23).

La charge élémentaire d2q = 6d2S = ordrd 6, loca-

liséeen P, créeen M le champ élémentaire :

2p_ 1 ordrdf ;|
drey  p?

La composante axiale de ce champ est :

d2E =d2F.2 =1 ordrdo

cos o
Codmey  p? :

Il nous faudra deux intégrations pour obtenir 1’ex-
pressionde E, .

a) En maintenant r constant, intégrons sur @, ce qui
revient a calculer le champ créé en M par une bande
circulaire de rayon r et d’épaisseur dr:

2n
dE, = o_rdr dﬂ—i@cosa

280 p
Remarque : Nous aurions pu aussi utiliser les résultats
de I’Application 7.

b) Nous devons maintenant intégrer sur r. Il est com-
mode pour cela, compte tenu de la dépendance de p et
de o a r,de prendre comme variable d’intégration .

*Pour z>0,ilvient: p= ﬁ et r=ztan.

Donc dr=z o et, apreés simplification :
cos‘a
dE, =5~ sina.da .

2 )
Par intégration, il vient :

Anax .
o f sinceda = -2 (1
0

= — COS O
< 280 280

max) >
d’ou I’expression du champ en M :

EM 1- 2= (1-——2—\¢2
M) = 0( COS Ol €, 260( N’W)LZ'

¢ En un point symétrique de M par rapport au disque,
nous devrions avoir E.(-z)=-E,(z), ce quin’est pas
le cas de I’expression précédente, établie avec la res-
triction z > 0. En reprenant les calculs pour z <0, on
voit que I’expression du champ valable pour tout z est:

lzl Vs
E(M) 51gne(z)(l—
VR2+72) ¢
c’est-a-dire :
esi z>0: E(M)_—(I—%)é’-
260\ VR2Z4+z2) F

esi z<0: E(M):E—G(] +%)‘e’z.

€0 VR +72) ©
¢ En traversant le disque dans le sens des z croissants,
la composante tangentielle du champ est conservée et
sa composante normale subit la discontinuité :

R
X

Doc. 23. Champ d’un disque uniformément chargé.

Remargue : Il nous est impossible de définir le champ
électrostatique en un point du disque.

Le tracé du graphe de E,(z) est donné sur le docu-
ment 24. E

Doc. 24.

30




Nous admettrons les résultats mis en évidence dans I’Application précédente.
P 4 _ O - P _ —_—
Ep-Ep=¢g iz & Ey=Eyy,

ou encore :

= = _ 0=
EZ_El_gT)an'

5 Champ gravitationnel

* L’analogie entre la loi de Coulomb :

et celle de Newton :

1—-2
2
nous permet de conduire I’étude de la gravitation et de 1’électrostatique sur le méme

modele, en remplacant les charges g1, g par les masses my, my etla constante
1
TTE()

électrostatique K= par —G ou G estlaconstante universelle de gravitation.

* Une masse ponctuelle mg (masse source) placée en un point O, crée en tout
point M de I'espace, un champ gravitationnel E, défini par (doc. 25) :

— N

2 €12 e
Eg(M)Z —Gm() r2 = —Glnoﬁ

et la force qui s’exerce sur une masse m (masse d’essai) placée en M est :
F (M) =mE (M)

Cette force est toujours attractive, ¢’est-a-dire dirigée de M vers O .

* Nous postulerons encore la linéarité des effets, ce qui se traduira par le principe
de superposition.
Le champ de gravitation E, créé en M par un ensemble de masses ponctuelles
m; situées en des points P; est donné par :
— N PM
EM)=-G X m;-"= .
i=1 P:M:

i
Dans le cas d’une distribution volumique (D), ce champ est donné par la relation :

Ey(M)= —foy(P)%dr .
* Le champ de gravitation est défini et continu en tout point de I’espace, sauf sur les

masses ponctuelles et sur les distributions surfaciques et linéiques.

* Les lignes de champ gravitationnelles, définies par I’équation différentielle :
Eg(M) AdM=0

ont les mémes propriétés que celles du champ électrostatique, mis a part le fait
qu’elles partent de I’infini ou des points de champ nul pour aboutir sur les masses.

2. Champ électrostatique

O (mg)

Doc. 25. Champ gravitationnel créé
en M par la masse mg en O :

i _ ¢
Eg(M) =-Gm, 2
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Aas s CQ F Ry

@ LOI DE COULOMB

La force de Coulomb, force d’interaction électrostatique exercée par la charge ¢q; sur la charge ¢, (les deux
’ : e Q9 €1

charges étant dans le vide) est: fj o= = ——=5 -

AmE) (M My)*

@ CHAMP D’UNE DISTRIBUTION

» Le champ électrostatique E créé en M par un ensemble de charges ¢; situées en des points P; est donné par :

N —

E 1 PM

izt 0 0= g, El % p w3
1

* Distribution volumique :

B (M)=_1 PM.
Ea (D= 7e, ﬁf P o3 47 -
gl

* Distribution surfacique :

Eq M= PM
Eq )= g f f o(P) 5 S .
Op

* Distribution linéique :

E@(M)=4nlgo f)L(P)% de.
9]

* Le champ est continuellement tangent a des courbes appelées « lignes de champ ». Ces lignes sont orientées par le
sens du champ.

* L’ensemble des lignes de champ s’appuyant sur une courbe fermée (ou contour) C engendre une surface & appelée
« tube de champ ».

* Le champ est défini et continu en tout point de I’espace lorsque la densité volumique de charge p(P) est finie.

* Le champ électrostatique en un point de sources n’est pas défini lorsque ces sources sont modélisées par une den-
sité surfacique ou linéique de charge.

A la traversée d’une distribution surfacique, la composante tangentielle du champ est conservée et la composante nor-
male subit une discontinuité : Ez) - E{ = e% .

® SYMETRIES DU CHAMP

* Le champ électrostatique est un objet tridimensionnel ayant les propriétés de symétrie d’un vecteur polaire ou vecteur
«vrai ».

* Symétrie plane
Sur un plan-miroir /7 d’une distribution de charges & , le champ électrostatique créé est parallele au plan I7.

Aux points M et M’ symétriques par rapport a un plan-miroir /7 d’une distribution de charges &, les champs
électrostatiques E et E’ sont symétriques I’un de 1’autre.

* Antisymétrie plane

Sur un plan-antimiroir I7* d’une distribution de charges & , le champ électrostatique créé est perpendiculaire
au plan [IT*.

Au point M’ symétrique de M par rapport au plan-antimiroir /7% d’une distribution de charges &, le champ
électrostatique E’ est I’opposé du symétrique du champ E créé par la distribution en M .




Contrite rapide

v/ Comment s’exprime le champ créé en M par une charge ponctuelle ¢ placée en O.
v Qu’est-ce que le principe de superposition pour le champ €lectrique ?
v/ Exprimer le champ E (M) créé par une distribution de N charges ponctuelles ¢g; placées en P;.
v’ Que signifie une ligne de champ, un tube de champ ?
v Pourquoi deux lignes de champ ne peuvent-elles pas se couper en un point ou le champ est défini et non nul ?
v Dans quel plan se trouve le vecteur champ E(M ) :
e d’une distribution invariante par translation parallelement a un axe (A) ;
e d’une distribution de symétrie de révolution.
v’ Que peut-on affirmer, de fagon générale, du champ créé par une distribution volumique de charges d’extension
finie ?
v’ Que peut-on dire du champ a la traversée d’une distribution surfacique ?

Du tac au tac (Vrai ou faux)

I.Le champ E(M) créé par une distribution 5. A la traversée d’une distribution linéique uni-

continue de charges d’extension finie, est défini forme de densité A, Ie}t:hamp subit une dis-
et continu en tout point de P’espace. continuité d’amplitude 7
Q Vrai 4 Faux Q Vrai QO Faux

2. Un disque, de centre O et de rayon R, porte 6
une charge q uniformément répartie. Le champ
créé par ce disque en M est:

E=1 9g

. Les lignes de champ partent des charges
positives et aboutissent soit sur une charge
négative soit a I'infini.

~ dme, r? € Q Vrai QO Faux
avec r= OM et e, vecteur unitaire dirigé de O 7. Par un point de Pespace ne peut passer qu’une
vers M. .
seule ligne de champ.
Q Vrai O Faux Q Vrai Q Faux

3. Le vecteur champ électrostatique est un vecteur 8. Sur I’axe de révolution d’une distribution de
polaire. charges, le champ est nul.
QO Vrai U Faux Q Vrai Q Faux

4. Sur un plan anti-miroir d’une distribution de
charges, le champ est nul.

U Vrai 4 Faux » Solution, page 36.
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Exercices

;I,,,.V Champ créé par un segment chargé

1) Calculer en un point M de
coordonnées cylindriques
(r, 6, z) le champ créé par
un segment de 1’axe (Oz),
de charge linéique uniforme
A, compris entre les points
Py et Pyd’abscisses 71 etzo,
repérés par les angles [,

etfy.

2) Examiner le cas du fil rec-
tiligne infini uniformément
chargé.

% Champ créé par une sphére
chargée en son centre

Supposons que 1’on puisse charger une sphere de centre O avec
la charge surfacique o = oy cos® 6 (coordonnées sphériques
d’axe (Oz) avec origine en O). Quelle est la valeur de son champ
au point O ?

S

.. Champ d’une distribution

a symétrie cylindrique
Indiquer la forme du champ créé par une distribution possédant
la symétrie cylindrique d’axe (Oz).

é;,, Champ d’une distribution

- a symétrie sphérique
Méme question pour une distribution possédant la symétrie
sphérique de centre O.

é: Symétries et invariances

Soit un plan repéré par les axes (Ox) et (Oy). Une charge ¢
placée en P crée un champ électrostatique £ au point M .
Nous faisons subir la méme transformation aux points P
etM.

Etudier le champ E~ au cours de cette transformation, dans
les cas suivants :

translation
cas 1 PM Py, M,
rotation d’angle
cas 2 PM ° Py, My
symétrie par rapport a (yOz,
cas 3 PM Y par rapport a (y0z) Py, Ms
symétrie par rapport au point O
casd | PM YICTIE par Tapport 40 b Py, My
M 3,7 =
X
7/ \
A
/ \ P
4 \ s
/
!
!
1 1
I I
1 \ X

M,,CI'!amp'cree par une sphére
uniformément chargée en surface

Soit une sphere de centre O et de rayon a portant des charges
réparties uniformément en surface (densité surfacique de
charges o).

1) Déterminer le champ au centre O de la sphere en utilisant
des considérations de symétrie.

2) Etudier le champ E  (orientation et parameétres dont il
dépend) en tous points de I’espace.

Z.o: Champ d’un ruban chargé

Le ruban surfacique infini représenté sur le schéma porte une
charge surfacique o uniforme. Calculer le champ électro-
statique créé par le ruban au point M (0, 0, z) .

Z




2. Champ électrostatique

§,_.., Champ au centre d’une sphére
partiellement chargée

Calculer le champ créé en Z
son centre O par une

sphere de rayon R portant %L%{;
la charge surfacique o /

répartie uniformément sur
sa surface entre deux plans
de cote 71 et z o y
(—R=z1=z=p<R)

Examiner le cas de la

':1'1 Champ créé par N charges ponctuelles
réparties sur un arc de cercle

On considere une distribution de N charges ponctuelles ¢,
équidistantes sur un arc de cercle AjAy de rayon R et de
centre O. Onnote « ’angle sous lequel la distribution est
vue du point O .

1) Déterminer le champen O .

2) Que vaut le champen O quandles N charges sont régu-
lierement réparties sur tout le cercle ?

demi-sphere chargée.

2_,. Champ d’un cerceau chargé + Aou — A
par moitié sur son axe

Un cerceau de rayon R, de centre O, d’axe (Oz) porte

la charge surfacique A.signe (y), A étant une constante.

Déterminer la direction du champ créé par le cerceau en

un point M de I’axe (Oz) . Calculer le champ au point M .

-A

.1,,.0.» Equation d’une ligne de champ
pour un ensemble de charges

N charges ¢, ..., gy sontréparties sur 1’axe (Oz). Montrer
que I’équation d’une ligne de champ est de la forme :

N
Z g cos 0; = cte
i=1
ou les angles 6; sont définis sur le schéma suivant :

12

- Equivalence entre deux distributions
de charges

Montrer que le segment AjA, portant la densité linéique de
charges A, crée en M le méme champ que I’arc de cercle
BB, de centre M, de rayon r = MH et portant la méme
densité linéique de charges A .

35
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Corrigeés

Solution du tac au tac, p. 33.

l. Vrai; 5. Faux;

2. Faux; 6. Vrai;

3. Vrai; 7. Vraisi E non nul
4, Faux; 8. Faux.

- 1) Le champ créé en M par un élément de longueur dz du fil de position

repérée par o, §'écrit :

1 (cosag,-sinag,)
dEM) - T Mz e

Le champ en M est donc contenu dans le plan (OM, 0z) , et nous avons :

- _ 1 1%} ,
E(M)_4n£0 L Mz

B _ rda _r
avec dz=d (rtan @) = sl et d Co0sa

S o
{cos e, ~sinae,)
T Y
2

dh
.11 vient alors :

=

45550% [(sinfiy—sinf)) &, +(cos fr—cosfy) e; |.

2) Le cas du fil infini s’obtient en prenant la limite f3; tend vers — % et B, tend

T .= A
= = —e, .
vers ) ,soit E ey n

%> La distribution de charges est de révolution autour de I'axe (0z) . Au point

O appartenant aux deux plans de symétrie (xOz) et (yOz), le champ €lectrostatique
doit étre parallele a ces deux plans, donc a I'axe (0z) .

Le plan (xOy) est aussi un plan de symétrie de la distribution de charges (changer
zen -z revient a changer fen - 6 ). Au point O, appartenant a ce plan de
symétrie, le champ €lectrostatique doit étre paralléle a ce plan.

Nous obtenons ainsi sans calcul E 0)=0.

et Deux plans de symétrie contiennent un point M : le plan IT; contenant M

et I’axe (0z) qui est un axe de révolution de la distribution, et le plan IT) contenant
M et perpendiculaire a I'axe (0z) .
En M, le champ E est parallele a ces deux plans, donc radial. Soit en coordonnées
cylindriques :

E(r.0,9=E(6,2e.
La distribution étant invariante par translation parallelement a (0z), et par rotation
autour de (0z), nous obtenons deux simplifications supplémentaires :

E(r0,2=E (r,0)=E(e,.

é:"* Considérons deux plans perpendiculaires contenant le centre de symétrie O
et le point M, qui sont des plans de symétrie de la distribution de charges. Ces plans
contiennent le champ au point M. Nous en déduisons en coordonnées sphériques :
E(r6,9)=E(r 0 9.
La distribution étant invariante par toute rotation d’axe contenant le point O, nous
obtenons : ~
E(r,0,90=E(Me,.

La norme du champ dépend de r, sa direction de fet ¢.

é;z E 1= E i
E est obtenu par rotation d’un angle ezde E autour de (02) ;

E3 est symétrique de E par rapport 2 (y02) ;

E4 == E o _

Nous remarquons que le champ E  subit la méme transformation que la distribution
de charges.



2. Champ électrostatique

E,

S

— 1) Tout plan contenant le centre O de la sphere est un plan de symétrie de

charges. E estdonc porté par I'intersection de ces plans qui se réduit ici & un point,
d’ou E estnulenO.

2) Etudions le champ E enun point M de I'espace . Les symétries des charges vis-

a-vis d’un plan contenant le point M sont les suivantes : tous les plans contenant

les points O et M sont des plans de symétrie de charges. £ a leur intersection est

porté par OM , donc E =Ee;.

La symétrie sphérique des charges impose que ce champ dépend seulement de :
OM=r,soit E =E(r)e,.

(Nous verrons que le champ E estde plus nul en tous points intérieurs a la sphere.)

..Z‘"“‘ * Recherche de I’orientation du champ
Le plan (xOz) est un plan de symétrie de charges, donc le champ électrostatique est
dans ce plan. Le plan (xOy) est aussi un plan de symétrie de charges, done le champ
€lectrostatique est aussi dans ce plan. Le champ £ est donc porté par I'intersection
de ces deux plans E =E 7.

La distribution de charges est invariante par translation suivant I'axe (Ox) : ce champ
ne dépend pas de x . Nous avons donc E =E () €.

* Calcul du champ

Nous avons vu dans I"exercice 1 que le champ d’un fil rectiligne infini portant la charge

linéique A est E = ﬁ e, . Utilisons ce résultat en décomposant le ruban en une
(I}

succession de fils infinis de largeur dy et portant une charge linéique élémentaire

dA =0ydy, comme indiqué sur le schéma. La projection de ce champ él¢-
mentaire sur (0z) est donnée par :
90 cosa
A Fgo T

Sachant que r = et y=ztan o (soit dy=1¢ o ) , le champ cherché
¢

cos d 2@
vaut :
ap o 0
- 20dy = — -0
= oo COSZQdy = ooy A0 =
27 ez flal;tur 7T e fl(u,cur 27t€0 ’

du ruban du ruban

Ao représentant I'angle total sous lequel nous voyons la largeur du ruban du point M.

Soit E = oL arctan (2 e
it E = 7, arctan (f] e;.

+ Vérification
La composante du champ suivant (Oy) est donnée par :

. Aa
0y sinady 0y (2 sinada
largeur

YT Dme T 7 Dmey ) da COSC
du ruban 2
Aoc) )
COS | =7~
- _% (2, =0

et Utilisation des symétries
Le point O appartient aux plans de symétrie (x0z) et (y0z) de la distribution de charges : le
champ est porté par I'axe (0z), soit E (0) =E¢;.

+ Calcul du champ

Le champ cherché est la superposition des champs élémentaires créés par des
spires de méme axe (0z). Ces spires sont des portions de surface, sur la sphere,
délimitées par deux cones de demi-angle au sommet o/et ¢ + de. La densité linéique
dA de charges sur ces spires est :

dA=0oRdo

Sachant que le champ élémentaire d’une telle spire de rayon r =R sin ¢ est donné
(cf. Application 7) par :

dA.2aR sino= 0.2aR sin.Rdor ~ soit

i == L8 B

o g
nous obtenons :
dE,=- % cosasinada=- - d(sin20),
“ 2:90 450
2 2
. == ou-7]
SOit E =- 5 e

dgR* F
Pour la sphere compléte (—z| = zy = R) , nous trouvons naturellement un champ
nul au centre, et pour la demi-sphere (77 =0 ef z9 = R) , nous obtenons :

— G —

E (0)=- 4_.90 .

QMV‘ + Utilisation des symétries

M appartient au plan d’antisyméirie (x0z) de la distribution de charges. Le champ en
M, perpendiculaire a ce plan, est parallele a (Oy) : E(z) =Ey (2) E}, .
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Corriges

* Calcul du champ

Notons z (z > 0) I’abscisse du point M et repérons le point P décrivant le cerceau
comme indiqué sur le schéma de I'énoncé.

La contribution des deux demi-cerceaux suivant (Oy) est identique ; le champ total
est donc égal a deux fois la contribution suivant (Oy) du demi-cerceau supérieut.

P Ad¢
~
B M dEzi
l\ Z
|
|
dE, dE

La contribution au champ dE =dEy.e; di aunélément de longueur d€=Rd0), situé
en P (R cos 6, R sin 6, 0), portam lacharge Ad €, estégalea:

Al ePeM Ep=irey
4y

_ Rsinf
PM

dEy (M) = ,avec PM2=R2+2% et ep ey

Nous obtenons donc, pour I'ensemble des deux demi-cerceaux :

20R? fﬂ , AR
E,(M)=— sin 0do = .
A 4e,PM3 Jo nePM3

.Z’Q, Par raison de symétrie, les lignes de champ sont des courbes planes situées

dans des plans (xOy) passant par la droite support des charges. L'équation différen-

tielle d"une ligne de champest: E(M)AdM =0 soitencore X E(M) A di = 0
I

ol Ei(M) est le champ créé en M par la charge ¢;. Exprimons les produits vec-

toriels E; (M) A dM en utilisant, pour chacun d’eux, les coordonnées polaires de

pole A;: qu 7 (dren+rd9 ee,) 0=¢ qu r. =

11 apparait ainsi que I'équation différentielle d’une ligne de champ se simplifie en :

de;
2 4i T‘ =0
i i
Multiplions cette équation différentielle par y (facteur intégrant) et remarquons que
l =sin6;; il vient: 2 q;sin6,d6;=0.
i

I
Une intégration évidente donne le résultat cherché :

Y g;cos 6 = cte.
1

/!:I.v 1) Soit Ox la bissectrice de I’angle (A;0Ay) : par raison de symétrie, le

champ E en O est porté par I'axe (Ox) et il est dirigé du coté des x croissants si
¢ > 0 et dans le sens opposé si g < 0. .
La charge ¢, placée en Ay, créeen O le champ: E; = p .

TLE ()

e, etle champ
R
N

E=—
dme R™ 1

créé parles N charges est :

Comme nous connaissons déja la direction et le sens de E , il nous suffit d’en connaitre
N

la norme. Pour calculer la norme de X ¢; , construisons la somme vectorielle de
1

ces N vecteurs unitaires.

Notons /3 I'angle sous lequel est vude O I'arc de cercle délimité par deux charges
consécutives : (N-1)f= .

Les extrémités By, By, ..., By deces N vecteurs unitaires se trouvent sur un
cercle de centre {2 etderayon p telque: p= 1

2sin —
Slll2

N
La norme ;e_,; est celle du vecteur ByBy soit :
. [NB
lt?
sin ﬁ)

ol

| By = 2psi (NTﬂ)z

En définitive, le champen O s'écrit : E=——

2) Siles N charges sont régulierement réparties sur le cercle, alors Nf = 2n et le
champen O est nul, comme on pouvait s’y attendre.

e Lélément de longueur dz situéen P surle segment A;A; crée le champ:

2 A b~ o,
dE= dngy ? ep. Comme p= s L= rana, il vient :
rda 7_ A rda
dz= et dE= e
cosl dngg 2 T

En remarquant que dor est I’angle sous lequel dz est vu du point M, on en déduit
que les charges Adz et Arde créenten M le méme champ élémentaire dE . En
consequence le segment AjA; etl'arc de cercle BB créenten M le méme champ

E (M). On peut ajouter, en considérant I'arc de cercle, que le champ E (M) est, par
raison de symétrie, porté par la bissectrice de I'angle (A;0A;).



Potentiel
électrostatique

Jntro Juehs)

Le champ électrostatique

peut étre caractérisé simplement
a l’aide d’une fonction

que nous appellerons

potentiel électrostatique.

Le choix de ce nom sera justifié

par Uinterprétation de cette fonction
en terme d’énergie potentielle

d’une charge soumise

aux effets d’'un champ électrostatique

OBIECTIFS

B Circulation du champ électrostatique.

B Potentiel électrostatique.

B Energie potentielle d’interaction électro-
statique.

PRI’EREQUIS

B Champ électrostatique.
B Gradient.
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I Circulation du champ électrostatique

I.1. Définition
Considérons une courbe I”liant deux points A et B. La circulation C d’un champ

. B _,
de vecteurs E , sur cette courbe, de A a B, est définie par Cyp (1) = f E .d¢ ,
A
)

ol d¢ désigne le déplacement élémentaire le long de la courbe I (doc. 1).

1.2. Circulation du champ d’une charge ponctuelle
1.2.1. Conservation de la circulation du champ

Le champ E créé par une charge ponctuelle ¢ placée au point O, que nous prendrons

9 ¢
4meyr? -

comme origine, est en coordonnées sphériques E (M) =

La circulation élémentaire E .dr associée a un déplacement élémentaire dr est :

F oa._ 9 & . q (1
E.dr_4ﬂ€0r2dr—4ﬂf£0d( )

La circulation de A a B sur la courbe I (ne passant pas par Q) s’écrit donc :

B
o4 q (1 _1
Foar= 0 (Lo,
fA(F) dmwey\"'a B

Elle ne dépend pas du choix du chemin I"(ne passant pas par O) suivi pour aller
deAaB.

La circulation du champ, d’un point A a un point B, se conserve lorsque nous passons
d’un chemin I" a un chemin I reliant ces deux points : la circulation du champ créée
par une charge est conservative : Capry = Cap(y -

1.2.2. Champ de gradient

La circulation élémentaire du champ est E.dr = — dv(r), avec:
q
M) = .
V(M) dneyr + cte

Nous pouvons identifier le champ créé par la charge ponctuelle a un champ de
gradient E = —grad V(i) .

1.3. Circulation du champ d’une distribution

1.3.1. Circulation conservative du champ

Le principe de superposition nous permet d’obtenir le champ créé par une distri-
bution en effectuant 1’addition des champs créés par chacune des parties élémen-
taires de la distribution.

B
En conséquence, la circulation E .d¢ alaméme valeur pour tous les che-
A

mins reliant A a B, ce qui signifie que :

La circulation du champ électrostatique est conservative.

)

A

Doc. 1. Courbe I liant deux points
A etB.



3. Potentiel électrostatique

Ou, ce qui est équivalent :

La circulation du champ électrostatique sur un contour (courbe fermée) est

nulle : o
fE.df - 0.
r

Le résultat est indépendant du contour.

Signalons une conséquence de cette propriété qu’il faut avoir a I’esprit lors du
tracé de lignes de champ : une ligne de champ électrostatique ne peut pas avoir
la forme d’une boucle fermée sur elle-méme. En effet, la circulation du champ sur ~ Doc. 2. Contour (T).
cette boucle, orientée par le champ, ne pourrait &tre que strictement positive (2

moins que le champ ne soit nul sur toute la boucle ou non défini en certains points,

ce qui interdit alors de la définir comme une ligne de champ), ce qui est en contra-

diction avec la propriété précédente.

()

2 Potentiel électrostatique

2.1. Circulation du champ et potentiel

2.1.1. Fonction potentiel

La circulation du champ électrostatique étant conservative, nous pouvons définir,
indépendamment du chemin suivi pour calculer la circulation du champ de A a B,

B_, .
la grandeur Cyp = f E . d¢ . Nous pouvons de méme définir la fonction V(r)
A

B,
par Vg =V, + f —E .d¢ lavaleur de cette fonction au point A pouvant étre
A

fixée arbitrairement (constante d’intégration). Doc. 3. Il n’exist de liene de ch
. 3. Il n’existe pas de ligne de champ

Nous conviendrons d’appeler la grandeur V fonction potentiel électrostatique, défi-  fermée.
nie a une constante pres.

La différence de potentiel entre deux points A et B est :

B_,
VA—VB=LE.d€ .

Ainsi, I’expression du potentiel V(M) (s’annulant a I’infini) créée par une charge
ponctuelle g en O est :

q

VD= e

Le champ électrostatique est un champ de gradient s’écrivant :

EM)=-grady VM) .

Le calcul du gradient se trouve dans 1’ Annexe.

Nous pouvons ainsi remarquer :
Un champ de vecteur E a circulation conservative est un champ de gradient.

» Pour s’entrainer : ex. 4.
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Application 1

Potentiel d’un fil rectiligne infini en coordonnées cylindriques, nous obtenons :
B - —
Déterminer le potentiel associé a un fil rectiligne infini Vp=Vy + f -E .dr
.. . A
portant la charge linéique uniforme A . (Le champ de
cette distribution a été calculé au chapitre 2 exercice 1.) B 2 dr 2 =
v+ | - dr _vy, _ ln[—]-
A 2megy T 2mey 1A

Nous avons vu que le champ de cette distribution a pour
expression en coordonnées cylindriques d’axe (Oz) Remarquons que pour ce modele de distribution infinie,
confondu avec le fil E = A c. il e nous est pas p(?s§1ble de choisir le potentiel \nu¥ a
I’infini. Si nous choisissons par exemple V4 =0 a dis-

2m Egr
, . , h s . tance r4 = R du fil, nous aurons :
L’expression d’un déplacement élémentaire étant :

dr =dr.e, +rd.cp + dz.e, ve_ A m[ﬂ

231?80

/;IM\\\
//;ll LR

TSI

Doc. 4. Potentiel d’une charge ponctuelle : Doc. 5. Potentiel d’un fil infini V = - 5 A In [%] .
q N . _ TT E()
V= al’infini, V=20.
dmegr f Nous visualisons I’équipotentielle O a distance finie

R du fil. A Uinfini, V est infini.

» Pour s’entrainer : ex. |.
2.1.2. Champ de gradient

La circulation élémentaire du champ s’identifie ainsi au signe pres a la différen-
tielle (exacte) de la fonction V(M) :

E.dZ = = (Y ax (YN ay - ()4, = -
E.d¢ =E,dx +E,dy+ E.dz = -(2Y) dx (M)dy (2Y)dz =~ av.
Remarque : Le choix du signe moins est pour l'instant arbitraire ; nous verrons

cependant qu’il est bien adapté a une association directe entre le potentiel élec-
trostatique et la notion d’énergie potentielle.

2.1.3. Invariance de jauge

Le potentiel électrostatique créé n’est pas unique.
Le potentiel électrostatique est défini a une constante pres.

V’(r)=V(r)+Vy (V, étant une constante arbitraire) est un autre potentiel acceptable.

Ce choix d’origine, appelé aussi choix de jauge, ne modifie pas le champ, grandeur
physique mesurable par ses effets (force de Coulomb) :

Le champ électrostatique est invariant de jauge, c’est-a-dire de la référence
de potentiel.
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Application 2

Equation différentielles locales vérifiées par
les composantes d’un champ électrostatique
E(x,y,2)
E(x,y,2)
E(x,y,2)

est un champ de gradient, ¢’est-a-dire qu’il dérive d’un
potentiel VIM) = V(x, y, z).

Le champ électrostatique : E (M) =

1) a) Rappeler les relations liant les composantes du
champ au potentiel.

b) Sachant que, par exemple :

a avV\_ 9 (d V) 9%V
day) ay\lax)” oxay’
en déduire un ensemble de relations liant les dérivées
partielles des composantes de E_ par rapport aux coor-
données d’espace.

2) a) Le champ électrostatique est-il un champ a circu-
lation conservative ?

b) En faisant circuler le champ électrostatique sur un
contour élémentaire constitué d’un rectangle de coté dx

et dy dans un plan z constant (paralléle au plan (Ox, Oy),
JE, OE,

montrer que : — ="
4 ady Jx

En déduire les autres relations trouvées précédemment.

1) a) Les relations demandées sont E M)=- gHi)M VM),
qui conduisent a :

aV aV _aV
Ex_dx’ Ey_d) et EZ—7-
b) Sachant que 3 Rl (z‘y/)=aly(%),on en déduit :
9By _OE,
dx  dy

Les autres relations sont obtenues par permutation cir-

culaire :
IE, OE IE, IE,

X

ax oz oz T oy

2) a) Le champ électrostatique est un vecteur a circula-
tion conservative, c¢’est-a-dire que la circulation de ce
champ sur tout contour (courbe fermée) est nulle.

3. Potentiel électrostatique

b) La circulation du champ électrostatique sur un contour
élémentaire orienté (doc. 6.) constitué d’un rectangle de
cotés dx et dy dans un plan z constant (parallele au plan
(Ox, Oy), et de centre M(x, y, z) donne :

e Circulation surAB — +E, (x y— dzy,z) dx (1)

e Circulation sur BC ( ) 2)
e Circulation sur CD -E, (x, v+ 7); ) dx (3)
» Circulation sur DA —Ey (x 23z ) dy
y
D | &
M
B s A ImTTTTTT B
A : B <« Doc. 6. Contour
i choisi pour faire cir-
x * culer le champ.

En regroupant les termes deux a deux, cela donne :

IE, (x,y,2) o
W+@ - -y

JIE, (x,y,2
@D+@) - +7>(axy v dy .

La somme de ces deux expressions est nulle, ce qui
conduit a :
OE, OE|

X

ay — dx

On en déduit aisément les autres relations par permuta-
tion circulaire :

0E, 9E,  OE, OE,

X

gx ~az  az T ay

Ces propriétés sont valables pour tous les champs élec-
trostatiques.
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Application 3

vectorielle.

La composante

Ey

=

Potentiel associé a un champ uniforme

1) Calculer grad (Ey.OM), o Ey désigne une constante

2) Exprimer le potentiel associé a un champ électrosta-
tique uniforme E .

1) En exprimant le produit scalaire a dériver a ’aide
des coordonnées cartésiennes, nous avons (¥ = OM ) :

0 = — J
IX(EO'r) :EX(EOXX +E0yy + EOZZ) = E()x

du gradient suivant (Ox) étant égale a

Ey,, celle sur (Oy) sera égale a Eoy et celle sur (0z) a

Nous obtenons donc :
grad (Ey.7) = Ey.

Le résultat final est indépendant du systeme de
coordonnées choisi pour effectuer le calcul.

y
M o
=
<
=
r o
Q
<
zr 0 X 5
i &
équipotentielles

Doc.8. E=Equ, -

2) 11 suffit d’utiliser 1’expression du potentiel en fonc-
tion de la circulation du champ, ce qui nous

B —_ .
donne VBZVA+fA —E.dl =Va-Eg(rp-ra),
soit : V(r)=—Eqgrcos 0 +cte .

Ce résultat est en accord avec le calcul élémentaire pré-
cédent.

Potentiel créé par une distribution

de charges

3.1. Superposition des effets

L'opérateur gradient étant un opérateur linéaire, nous pouvons aussi obtenir le poten-
tiel électrostatique d’une distribution, par superposition des potentiels créés par les

charges élémentaires

VM) = ey PM

d¢p de la distribution :
1 dgp

(référence de potentiel nulle a I’infini).

L’expression intégrale du potentiel, s’annulant a ’infini, créé par une
distribution de charges & d’extension finie est de la forme :

_ 1 %p
V(M)‘f”@ dmeg PM

L’élément de charge reste a préciser pour le type de la distribution % considérée,
et nous utiliserons selon le cas envisagé I’une des expressions suivantes donnant,

a une constante pres,
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le potentiel électrostatique créé par 9.




3.2. Expressions du potentiel

B Ensemble de charges ponctuelles
Pour des charges ¢; placées en des points P; :

4
ven = ;1 dmey PM "

M Distribution volumique de charges

1 p(P)dr
von =[], s, “oar

M Distribution surfacique de charges

O(P)dS
V) = f f 4n£0 :

B Distribution linéique de charges

dl
VM) = f‘A() z

Remarques

o Ces expressions ne sont a priori applicables que dans le cas de distributions
d’extension finie afin d’assurer une signification aux intégrales. Elles correspon-
dent dans ce cas au choix de potentiel nul a I'infini.

e L’application de la derniére expression au cas du fil infini étudié dans I’Appli-
cation 1 conduirait a une divergence logarithmique de l’intégrale, alors que
Uintégrale correspondant au champ converge. Nous avons vu comment lever cette
difficulté, et observé l'impossibilité de fixer V. =0 a Uinfini pour ce modéle.

* Un autre probleme de convergence de l’intégrale apparait, si nous nous intéres-
sons au calcul du potentiel, en un point de la distribution, c’est-a-dire en un point
tel que PM =0 lors du calcul de I’intégrale. Dans le cas d’une distribution volu-
mique, l'intégrale converge s’il n’y a pas de charges a linfini.

3.3. Potentiel d’'un disque uniformément chargé sur son axe

Déterminons le potentiel V(M) d’un disque, de rayon R uniformément chargé
avec la densité o, en un point M de son axe.
Notons (r, 0) les coordonnées polaires d’un point P du disque et d2S=rdrd6
1’élément de surface associé a ce point. La charge élémentaire d2g = ordrd@ (infi-
niment petit d’ordre deux) localisée en P, crée le potentiel élémentaire :
2y=_1_ ordrdf

4me p
Une premiere intégration sur 6 fait apparaitre la contributiona V(M) d’une bande
circulaire de rayon r et d’épaisseur dr:

av=-209 ’drfznde—lﬂ .
0

dme, P T2 P

Nous devons maintenant intégrer sur r. La dépendancede p a r ne s’exprimant
pas simplement, nous prendrons comme variable d’intégration I’angle o :
r=ztano et p=

cos o’

3. Potentiel électrostatique

Pmax | |F\ P

Doc. 9. Potentiel d’un disque chargé.
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Apres simplification, I’expression a intégrer s’écrit :
dv= 02 sine.do_ oz dcos @)

2‘C:O cos?a 280 cos2
d’ou: o
: 0O al - [0} 3
26, | COSA 1) 72 Pmax —12) =7 /72+ R z
280 (C 5 max ‘S()( a | |) 25() (\ * | < D .

A la traversée de la surface chargée, le champ subit une discontinuité alors que le
potentiel est continu. Ce dernier résultat est général et nous I’admettrons.

Le potentiel est continu quand il est défini.

Remarque
Notons que la connaissance de la valeur du potentiel sur ’axe ne permet pas a priori
de déterminer le champ sur celui-ci : V (0, 0, z) est connue, et nous ne pouvons que

calculer :
9v(0.0.2)
d

E.0,0,2) = "

Toutefois, ['axe (Oz) étant un axe de révolution de la distribution, nous avons sur
celui-ci Ex = E\, = 0, ce qui acheve la détermination du champ sur Iaxe, en accord

avec le résultat établi au chapitre 2.
» Pour s’entrainer : ex. 2 et 7.

4 Topographie du potentiel électrostatique

4.1. Surfaces équipotentielles d’une distribution
4.1.1. Définition

Une surface équipotentielle, de potentiel V), est définie par I’équation V(M) =V},.
Deux surfaces équipotentielles correspondant a des potentiels distincts ne peuvent
pas avoir d’intersection.

4.1.2. Surfaces équipotentielles et lignes de champ

Considérons deux points trés proches appartenant a une méme surface équipo-
tentielle de potentiel V( (doc. 11). Notons M le premier, le second, noté N, étant
obtenu a partir de celui-ci par un déplacement élémentaire d7 d’orientation quel-
conque dans le plan tangent en M a la surface équipotentielle.

Par définition du potentiel V(N) =V(M) —E (M).dr , et par définition de
la surface V(N) = V(M) . Le champ électrostatique est donc normal a la surface
équipotentielle (propriété du gradient, cf. I’Annexe).

Remarque : Plus généralement, une surface définie par f(r) =cte admet le vec-
teur grad f comme vecteur normal.

Considérons maintenant une ligne de champ recontrant deux surfaces équipoten-
tielles, de potentiels V; et V, , aux points M et M5 (doc. 12). Si le champ oriente

la ligne de M vers M» , nous avons :
My

Vy =V, =V(My) - V(M) =fM —E.d€<0.
1

Le champ est perpendiculaire aux surfaces équipotentielles et les lignes de
champ sont orientées dans le sens des potentiels décroissants.
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Doc. 10. Le potentiel est continu a la tra-
versée d’une surface chargée.

surface
- iso V|
3 0
N
==l
Doc. 11. Sur la surface iso-Vy :
V(M) = V(N).
ligne de
champ

surface
iso V5

surface ——=
iso V4

Doc. 12. E est orienté dans le sens des
potentiels décroissants : Vi >V, .



Application <

Surface de potentiel nul
d’un systéme de deux charges ponctuelles

1) En choisissant le potentiel nul a Uinfini, caractériser
completement la surface équipotentielle V=0 d’un
systeme de deux charges ponctuelles Q (> 0) en O et
—q (< 0) au point d’abscisse d sur ’axe (Oz).

2) Sur le document 13, les traces des surfaces équipo-
tentielles ont été dessinées dans un plan contenant I’ axe
(02).

L’équipotentielle V=0 figure en bleu. Quelle est
la charge la plus élevée en valeur absolue ?

Q

Evaluer le rapport

3) Donner ’allure des lignes de champ si Q > 0.

1) Le potentiel créé en un point M de coordonnées

-~ avec
dneyr  Amegr

sphériques (r, 0, ) est V =

1
P =|r2 = 2drcos 6 + d*|*.

La surface de potentiel nul correspond a -~ = % (ce qui
r

n’a de sens que si Q et g sont de méme signe, c’est-a-dire
que les charges sont de signe opposé).

Si ¢ = Q, il s’agit du plan médiateur des deux charges.
Si g#Q, il s’agit d’une sphere. En coordonnées carté-
siennes son équation est :

2 2
d d
X2 + y2 + |z + " = 0
@ |l la_@
0’ e 1
son centre est au point d’abscisse z¢ = S sur
_a
0>
d

I’axe (Oz) et son rayon est R=

Z_4q
7 Q
2) L’équipotentielle V =0 entoure la charge —gq.
L’abscisse z ¢ de son centre est positif donc Q > g . Nous

q 1
—1|, vaut - -
0

pouvons lire que le rapport i ,égala 3

e

<C

3. Potentiel électrostatique

3) Le document 15 donne I’allure des lignes de champ.

équipotentielle
de potentiel V =0

e T \\
-~ F\\\ II'|

LS\

W w10

Doc. 13. L’équipotentielle de potentiel V =0 est un
cercle de diametre AB, avec A (+6) et B (+ 12).

Doc. 14. Nous visualisons sur ce schéma I’ équipoten-
tielle circulaire 'V =0 (en noir V>0 et en bleu
V <0).

- €quipotentielle
e (-" “de potentiel V = 0|
AN ) ‘I’

» Pour s’entrainer : ex. 6, 8 et 9.
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Remarques

o L’orthogonalité des lignes de champ aux surfaces équipotentelles est a retenir pour
effectuer des tracés qualitatifs de lignes de champ et de coupes de surfaces équipo-
tentielles sur une figure.

Attention cependant : le champ électrostatique est perpendiculaire aux surfaces équi-
potentielles : mais nous pourrons rencontrer le cas d’une ligne de champ non per-
pendiculaire a une surface équipotentielle, lorsque le point qu’elle atteint sur cette
surface est un point de champ nul.

o Sur une carte de lignes équipotentielles, les régions de champ intense sont caracté-
risées par des lignes équipotentielles rapprochées. En effet, si |V, — V4| est faible, il
est possible d’évaluer le champ en My parexpression : \Vo—Vil=EM;).M{M,.
Plus My M est faible, plus E(M;) est intense. Ainsi sur le document 13, le module
du champ est plus intense en A qu’en B : IE(A)I > IF(B)I .

4.2. Considérations de symétrie
4.2.1. Champ scalaire

La circulation élémentaire E .d€ fait intervenir le produit des deux vecteurs (polaires),
et possede les propriétés de symétrie d’un champ scalaire.

Nous pourrons choisir la jauge (constante d’intégration) de fagcon a obtenir un poten-
tiel V(") ayant les propriétés de symétrie de la distribution de charges.

Par exemple, dans le cas d’une distribution % admettant un plan d’antisymétrie IT*,
nous prendrons V =0 sur ce plan. En un point M et en son symétrique M’ par rap-
port au plan IT", le potentiel prend alors des valeurs opposées.

Dans le cas d’une distribution % admettant un plan de symétrie IT, le potentiel a
la mé&me valeur en un point M et en son symétrique M’ par rapport au plan I1.

Les propriétés de symétrie du potentiel peuvent aussi s’obtenir a 1’aide de celles
du champ créé par la distribution étudiée. Pour les symétries usuelles, les
propriétés du potentiel s’ obtiennent intuitivement comme I’illustrent les exemples
qui suivent.

4.2.2. Invariances
Etudions I’expression générale du potentiel pour diverses invariances.

* Pour une distribution invariante par toute translation parallélement a I’axe (O2),

le potentiel ne peut dépendre que des variables de position x et y. Ceci peut étre

confirmé par le résultat obtenu au chapitre 2, donnant la forme du champ :
E(x,y,2) =E (x,y) =Ex(x,y)e y T Ey(x, y)ey .

* Pour une distribution possédant la symétrie de révolution par rapport a l’axe (Oz),
il apparait immédiatement que la fonction potentiel ne dépend que des variables r
et z des coordonnées cylindriques d’axe (Oz), en accord avec le champ déja obtenu :
E(r,0,2) =E.(r,2)e, +E,(r,2)e .
* Pour une distribution possédant la symétrie cylindrique d’axe (Oz), la fonction
potentiel ne peut dépendre que de la distance r a ’axe (Oz) :
V)=V, 0,2) =V(r),

en accord avec la forme du champ :

E(r,0,2)=E(r)e,.



* Pour une distribution possédant la symétrie sphérique de centre O, la fonction
potentiel ne dépend que de la distance r au point O :

V() =V(r, 0,90) =V(r).
Le champ est d’ailleurs de la forme : E(r,0,9) =E(r)e,.

5 Energie potentielle d’interaction
électrostatique

5.1. Energie potentielle d’'une charge placée
dans un champ

5.1.1. Travail de la force électrostatique

Le travail élémentaire de la force f =¢E lors d"un déplacement dM de celle-ci est :
dW=f.dM = gE .dM = — g grad V.dM = — qdV = — d(qV).

Le travail de cette force correspondant a un déplacement de la charge ¢ d’un point

A aun point Best ainsi Wap =—¢q (Vg — Vy).

5.1.2. Energie potentielle

Ce travail ne dépend pas du chemin suivi et s’identifie a la variation d’une fonction
d’état qui ne dépend que de la position de la particule.

L’énergie potentielle d’interaction entre une charge ¢ et un champ électro-
statique E créant le potentiel Vest €p =qV.

La force de Coulomb f =gE exercée par le champ électrostatique dérive de cette
énergie potentielle, définie (comme le potentiel électrostatique) a une constante pres :

f =qE = —grad %p.
Ainsi, ce champ de force est un champ de gradient et, a ce titre, la force électro-

statique est une force conservative : son travail entre deux points A et B ne dépend
pas du chemin suivi.

En effet, le travail élémentaire est égal a I’opposé de la variation de 1’énergie poten-
tielle :
f.dM =gE .dM = — d%p.
Le travail de la force électrostatique entre A et B est:
Wyp =— gP(B) + %P(A) = _A%p.

Awpplication J

Quel est le travail fourni par un opérateur qui déplqce tres Jop=—4E.
lentement une charge q dans un champ électrostatique E

L’opérateur déplace la charge sans lui fournir d’éner-

Travail de Popérateur déplacant la charge la force fop qu’il applique a la charge sert a compen-
ser la force exercée par le champ E sur celle-ci, d’ou

donné ? Lorsque I”opérateur déplace la charge de dM , il four-
nit a la charge le travail élémentaire :

gie cinétique : si la vitesse de déplacement est tres lente, dWop = fop AM =dgV)=+d%p.

3. Potentiel électrostatique

» Pour s’entrainer : ex. 3.
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5.2. Energie d’interaction de deux charges ponctuelles

5.2.1. Travail de constitution du systéeme de deux charges

L’opérateur cherche a présent a amener deux charges ¢ | et ¢, aux positions finales
M et M, depuis une situation d’interaction nulle ou les charges sont infiniment
éloignées, sans leur fournir d’énergie cinétique.

5.2.1.1. Cas particulier

Imaginons tout d’abord une transformation particuliere tres simple a étudier. Dans
un premier temps, I’opérateur amene la charge ¢ seule depuis I’infini jusqu’au point
M | sans avoir d’énergie a fournir.

Par la suite ¢ est fixe, donc ¢ ne recoit pas de travail.

Amenant g, au point M, , en la déplacant dans le champ électrostatique créé par ¢,
I"opérateur fournit le travail Wop =¢,V1(M>), ot V(M) désigne le potentiel (pris
nul a I'infini) créé par ¢ au point M :

q

N = e MMy

Le travail de constitution du systeme est donc :

_ 9q2
Woo = seegM M,
5.2.1.2. Cas général
La force exercée par g sur g, est ?1 —p = Z;:iz % » opposée a la force exer-
0 1M

cée par g, sur g . L’opérateur doit compenser ces deux forces.
Lorsqu’il déplace ¢ de dM et g, de dM, , il fournit le travail élémentaire :
3Wop = fop—-g,-dM| +fop—g,-dM>

s o _ q192 1
= —f1—.dM M, = .
fi-2 172 4re,, d(MlM2)

Le travail total fourni par 1’opérateur s’identifie ainsi au résultat obtenu dans le cas
particulier simple étudié précédemment.

5.2.2. Energie potentielle d’interaction

L’énergie potentielle d’interaction électrostatique entre les charges ¢ et
qp est:

- 1 992

En notant V| (M ,) le potentiel créé par la charge ¢ au point M, et Vo(M )
le potentiel créé par la charge g, au point M |, nous pouvons aussi écrire cette
énergie sous les formes suivantes :

Eprn=q1VaMy) = q2V1(M>)

= 2 1a1V2 (M) + g2V (M),



Application o

Interaction responsable de la cohésion d’'un atome

1) Les solides et les liquides ont tous une masse volu-
mique w de ’ordre de grandeur du kg.dm 3 (a peu
pres 1 pour eau liquide et la glace, pour le mercure
13,6, ...). Quel est l'ordre de grandeur d de
la taille d’un atome ou d’une molécule ?

2) L’énergie d’ionisation de I'atome d’hydrogene (dans
son état fondamental) est égale a 13,6 eV.

Pour rendre compte, au moins en premiére approxima-
tion, de la structure de I’atome, faudra-t-il invoquer les
forces de gravitation (la constante de gravitation vaut
G =6,67.10"!1 S, er la masse de I’électron est
m,=09. 10730 kg), Uinteraction électromagnétique, ou
bien les interactions forte ou faible (de portée tres réduite,
de l'ordre de 10~ m) ?

1) Les liquides et les solides sont extraordinairement
peu compressibles, les atomes étant « au contact » a I'in-
térieur de ces milieux. La masse molaire M des corps
cités en exemple est de I’ordre de quelques dizaines de
grammes (18 g.mol ™! pour I’eau).

Assimilant I’espace occupé par un atome ou une molé-
cule simple a un volume de 1’ordre de d 3 nous évaluons
d en écrivant :

3. Potentiel électrostatique

% = volume occupé par une mole =~Nud?, soit :
3 1
x( iO.lO 23)3 ~ 100
10° x 6.10

(Nous savons, en effet, que la taille d’un atome ou d’une
molécule élémentaire est de ’ordre de 1071 m J)

2) Imaginons un électron se déplagant au voisinage d’un
proton, a une distance de 1’ordre de 1071 m telle que
les interactions forte et faible soient négligeables ; il
nous reste a comparer les ordres de grandeur des éner-
gies d’interaction gravitationnelle et électromagnétique
avec |’ordre de grandeur caractéristique donné par I’éner-
gie d’ionisation de I’atome.
Calculons donc :

&2
gP(électromagnéthue) = W

~2.10718J~10eV .

2 000m2G
%P(gravitationnelle) = d

~10777~6.10%eV.
1l faudra donc batir un modele d’atome ou les charges

positives du noyau et le nuage électronique environnant
sont liés par I’interaction électromagnétique.

Conducteurs en équilibre électrostatiques

et condensateurs

6.1. Conducteurs en équilibre électrostatique

Un conducteur est un corps qui contient des charges libres, c’est-a-dire des particules
chargées capables de se déplacer sous I’action de forces appliquées. En électrostatique,

la seule force considérée est la force électrostatique : F' =g E.

Un conducteur est en équilibre électrostatique quand ses charges libres n’ont aucun

mouvement d’ensemble dans un référentiel li€ au conducteur :

Le champ électrostatique E(P) est alors nul dans tout le volume du conduc-

teur.

11 est possible de démontrer (et nous admettrons le résultat) que :

En un point P situé a 'intérieur d’un conducteur, la densité volumique de
charge p(P) est nulle dans un conducteur en équilibre électrostatique.

La charge d’un conducteur en équilibre électrostatique est donc superficielle
et elle est caractérisée par la densité surfacique de charges & (Q).
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Notons ¢(Q) et n(Q) respectivement la densité surfacique et le vecteur unitaire de la
normale sortante en Q pris a la surface du conducteur en équilibre électrostatique.
Considérons, en outre, les points M et P au voisinage immédiat de Q, situés sur le
supportde 7(Q), le premier A I’extérieur et le second a I'intérieur du conducteur (doc. 16).

A la traversée de la surface en M , le champ subit une discontinuité (cf. chapitre 2,
§44):
— — o(Q) —
Eon-Ep)= “L70).
Comme E( (P)=0, il en résulte que :
= o]
Ean= 79
0

1(Q), M étant a Iextérieur; au voisinage immédiat de Q .

En un point M situé au voisinage immédiat d’un point Q de la surface exté-
rieure d’un conducteur, ou la densité surfacique est 6(Q), le champ vaut :

Eon="Pio).

€0

Par ailleurs, de la relation E =— grad (V) nous en déduisons que le potentiel V(M)
est constant dans un conducteur en équilibre électrostatique. La continuité du potentiel
ala traversée des surfaces chargées, nous permet d’affirmer que :

La surface d’un conducteur est une surface équipotentielle.

Les lignes de champ sont donc normales a la surface des conducteurs en équilibre élec-
trostatique.

Sur le document 17, un conducteur porté au potentiel V' est placé en présence d’une
charge ponctuelle Q> 0. A I’équilibre électrostatique, on observe sur le conducteur une
ligne neutre (o= 0) (en pointillés) séparant une région o ¢'< 0 (en bleu) d’une autre
ol 0> 0. Concernant le conducteur, on voit que les lignes de champ partent des régions
chargées positivement et qu’elles aboutissent sur des régions chargées négativement.

6.2. Condensateur plan

Considérons un ensemble de deux plaques métalliques paralleles (A;) et A, reliées
a une source de tension constante U = V| —V, . Notons e la distance entre les deux
plaques et S Iaire des surfaces en regard (doc. 18).

Quant e est faible devant les dimensions latérales des plaques, cet ensemble des deux
plaques est appelé condensateur et les plaques métalliques baptisées armatures.

Dans ces conditions, nous constatons que le champ est beaucoup plus intense dans la
région interarmatures. Pour la suite, nous négligerons les effets de bord, c’est-a-dire les
effets liés a la présence d’un champ faible a I’extérieur du condensateur. Cette approxi-
mation est excellente dans les conditions ot nous la faisons.

Cela étant, nous observons que les lignes de champ sont paralleles, ce qui est la carac-
téristique d’un champ uniforme : E = E, ¢, (E,=cte).

En outre, les lignes de champ partent de 1’'une des armatures pour aboutir sur I’autre,
cela signifie que les densités surfaciques des deux faces en regard sont de signes oppo-
sés. Comme le champ est uniforme, cela signifie plus précisément que ces densités sur-
faciques sont uniformes et opposées.

Les armatures d’un condensateur portent, sur leurs faces en regard, des
charges opposées.

52

E(M)
0 n(Q)
M
Doc. 16. E(M) = GEOQ) 7(0).

M est au voisinage immédiat de Q.

Doc. 17. Influence d’une charge
QO (> 0) sur un conducteur.

Doc. 18. Condensateur plan.



Dans le cas du document 18, notons ¢ la charge positive de I’armature (A;), il vient :
qg=0S=§~L,S.

La circulation du champ électrostatique entre les deux plaques, calculée le long d’une

ligne de champ, s’écrit :

Mz o Z
U=V1—V2=f E.d€=EZf dz=E.e.
Ml 0
En éliminant E, entre les deux relations précédentes, il vient :
)
q= —2 U.

Les charges + ¢ des armatures d’un condensateur sont proportionnelles a
la tension U appliquée entre les armatures.

. .y £S ( )
Le facteur de proportionnalité C = % est appelé capacité du condensateur

plan. II s’évalue en farad (F).

Remarque
Lorsqu’on utilise la relation q = CU , il convient de rappeler sur le symbole du

condensateur (doc. 19) la définition de U (fleche de tension) et I’armature portant
la charge q (armature associée a I’ extrémité de la fleche des tensions).

3. Potentiel électrostatique

c

_q|<_|_

U

Doc. 19. Symbole d’un condensateur.
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S m e C Q F R

@ CIRCULATION DU CHAMP ELECTROSTATIQUE

* La circulation du champ électrostatique est conservative : la circulation du champ électrostatique sur un contour
(courbe fermée) est nulle :
J
@ POTENTIEL ELECTROSTATIQUE .
La différence de potentiel entre deux points A et B est: V4—Vp= f E.dl.
Le potentiel électrostatique est défini a une constante pres. A

tnl

.d€=0.

Le champ électrostatique est invariant de jauge, c’est-a-dire de la référence du potentiel.

@ CHAMP DE GRADIENT

Le champ électrostatique est un champ de gradient s’écrivant : E (M)=—grady, V(M) .
Un champ de vecteur E a circulation conservative est un champ de gradient.

Le champ est perpendiculaire aux surfaces équipotentielles et les lignes de champ sont orientées dans le sens
des potentiels décroissants.

@ POTENTIEL D’UNE DISTRIBUTION D’EXTENSION FINIE

L’expression intégrale du potentiel, s’annulant a I’infini, créé par une distribution de charges % d’extension

finie est de la forme :
_ 1 %p
V@“—ffL4mbpM-

Le potentiel est continu quand il est défini.

@® ENERGIE POTENTIELLE

L’énergie potentielle d’interaction entre une charge ¢ et un champ électrostatique E créantle potentiel V est:

%p =q V.
L’énergie potentielle d’interaction €lectrostatique entre deux charges ¢; et gp en M| et M, est:
9%

P12 = ey MM,

@ CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUES ET CONDENSATEURS

Le champ électrostatique E(P) est alors nul dans tout le volume du conducteur.

En un point P situé a 'intérieur d’un conducteur, la densité volumique de charge p(P) est nulle pour un
conducteur en équilibre électrostatique.

La charge d’un conducteur en équilibre électrostatique est superficielle et elle est caractérisée par la densité sur-
facique de charges o (Q).

En un point M situé au voisinage immédiat d’un point Q de la surface extérieure d’un conducteur, ot la den-
sité surfacique est o(Q), le champ vaut :

Eon= D).
€
La surface d’un conducteur est une surface équipotentielle.

Les armatures d’un condensateur portent, sur leurs faces en regard, des charges opposées ; les charges = ¢ des
armatures d’un condensateur sont proportionnelles a la tension U appliquée entre les armatures.

£05
La capacité d’un condensateur plan de surface S et d’épaisseur e estégalea: C= % , elle s’évalue en farad (F).




Contrite rapide

Avez-vous retenu l'essentiel ?

v Etablir I’expression du potentiel V(M) (s’annulant a ’infini) créé en M par une charge ponctuelle g placée
en O.

v’ Pourquoi le champ E (M) est-il a circulation conservative ?

¢ Une distribution de charges crée dans I’espace un potentiel V(x) =— Epx. Quelles sont les surfaces équipoten-
tielles de cette distribution et quel est le champ E(M) créé ?

v/ Démontrer que les lignes de champ coupent orthogonalement les surfaces équipotentielles.

v Etablir I’expression de I’énergie d’interaction ép entre une charge ¢ et un champ électrostatique E (M) créant
un potentiel V(M) .

v Etablir I’expression de I’énergie potentielle €p de deux charges ¢ et g placées respectivement en M; et
M, .

Du tac au tac (Vrai ou faux)

|I. Deux surfaces équipotentielles peuvent se 5. Le potentiel est défini sur une distribution

couper dans une région ou le champ est défini linéique.
et non nul. O Vrai aF

ra a
U Vrai U Faux ! o

6. La forme des surfaces équipotentielles est
déterminée par les symétries des distributions
de charges.

2. A la traversée d’une surface chargée, le poten-
tiel subit une discontinuité.

o Vrai  Faux Q Vrai O Faux
3. Dans un champ de poten‘tiel V(M), Pénergie 7 En unpoint My ol le champ est nul, le potentiel
potentielle ép d’un systéme de deux charges V(Mo) est nul
q) et g2, placées respectivement en M, et O Vrai aF
M,, est: rai aux
€p=qiV(M) + q2V(My) . 8. En un point My ou le potentiel est nul, une
Q Vrai O Faux charge ponctuelle g n’est soumise a aucune
force.
4. Le potentiel est défini a I'intérieur d’une distri- Q Vrai QO Faux

bution volumique d’extension finie.
a Vrai O Faux » Solution, page 57.
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Exercices

;I,,,.,f Potentiel créé par une circonférence chargée

Déterminer le potentiel créé en un point de son axe par une cir-
conférence, de rayon R, uniformément chargée avec la den-
sit€¢ A.On prendra V,,=0.

% Potentiel créé au centre d’une sphére

Une sphere de centre O et de
rayon R porte une charge QO
répartie avec la densité
surfacique o =g(6) h(¢) en
coordonnées sphériques.
Evaluer le potentiel électro-
statique créé par la sphere en
son centre.

X

.. Accélération d’électrons
par une différence de potentiel

Les électrons émis par le filament chauffé d’un écran d’oscil-
loscope ont une vitesse négligeable et sont accélérés par une
différence de potentiel V) .

1) Quelle est la vitesse atteinte par les électrons accélérés ?
2) A quelle condition peut-on considérer le résultat précédent,
obtenu par la mécanique classique, comme satisfaisant ?
Donnée : mec?=0,511MeV .

é,., Les valeurs de E et V sont-elles liées ?

Soit quatre charges disposées au sommet d’un carré dont
la longueur de la diagonale est 2a . Calculer E et V au centre
du carré dans les configurations suivantes :

Q@ charge +¢

(O charge—¢

é; Equilibre d’une charge
dans le champ électrostatique
de deux charges fixes

Soit un plan repéré par les axes (Ox) et (Oy) et deux charges
q fixes, identiques, placées en A (— a, 0) et B (a, 0).
Etudier la position d’équilibre et la stabilité d’une charge Q
pouvant se déplacer dans ce plan. On supposera g >0 .

é Trois charges au sommet
d’un triangle équilatéral

Considérons trois charges identiques (¢ > 0) au sommet d’un
triangle équilatéral de coté a .

1) Trouver un point évident de champ nul.
Quelle est la valeur du potentiel en ce point ?

2) La simulation suivante, représentant les lignes de champ
et les équipotentielles, montre qu’il existe trois autres points
de champ nul. Mesurer leurs positions et estimer la valeur du
potentiel en ces points.

&
zﬂ Potentiel d’une sphére
- uniformément chargée en surface

Soit une sphere de rayon R, de centre O et de charge surfacique
uniforme o . La référence de potentiel sera prise nulle a I'infini.

1) Calculer le potentiel en O .




3. Potentiel électrostatique

2) En utilisant le découpage suggéré sur le schéma, calculer
le potentiel en un point M intérieur ou extérieur a cette sphere.

§,,a Surfaces équipotentielles d’une ligne bifilaire

Soit deux fils rectilignes infinis, paralleles a I’axe (Oz) et d’équa-
tions cartésiennes respectives x =+a et x = —a, de charges
linéiques uniformes +A et —A (A >0).Onnote A et Ay
leurs intersections respectives avec le plan (xOy) .

Un point M est repéré par ses coordonnées cartésiennes
(x,y,z)etonnote r et r, les distances entre M et le pre-
mier fil d’une part, M et le second fil d’autre part.

Nous choisirons 1’origine des potentiels au point O origine
du repere. Caractériser en coordonnées cartésiennes la sur-
face équipotentielle de cette distribution. Représenter quali-
tativement les lignes de champ et les traces des surfaces équi-
potentielles dans le plan (xOy).

&
g,,... Ligne dipolaire

Considérons comme dans 1’exercice 8 une ligne bifilaire
constituée de deux fils rectilignes infinis, paralleles a I’axe

(Oz), d’équations cartésiennes x == a et de charges
linéiques uniformes = A (A > 0).

La ligne dipolaire est obtenue comme la limite de cette
distribution lorsque a tend vers zéro, en maintenant le produit

(2a)A constant. Nous noterons alors K = , la constante

e
caractérisant cette ligne.

Un point M est repéré par ses coordonnées cylindriques (7, 6, z).
Pour obtenir le comportement limite de la ligne bifilaire, nous
considérerons par la suite que la distance r du point M a 1’axe
(Oz) est tres grande devant a et nous nous contenterons d’ob-
tenir les expressions du potentiel et du champ de la ligne en
ne retenant que 1’ordre le plus bas non trivial de leurs déve-

. a
loppements en puissances du rapport - .

1) Exprimer dans ces conditions le potentiel créé par une
ligne dipolaire.

2) En déduire son champ.

3) Quelles sont les équations des surfaces équipotentielles
et des lignes de champ de la ligne dipolaire ? Les représen-
ter qualitativement.

Corrigés

Solution du tac au tac, p. 55.

l. Faux; 5. Faux;
2. Faux; 6. Vrai;
3. Faux; 1. Faux;
4, Vrai; 8. Faux.

/I . Toutes les charges de la circonfé-
P 8
rence se trouvent & la méme distance r du point 42

M, donc VM) = —L— od g =27RA estla M
davegr

charge de la circonférence.
En explicitant I'expression précédente, il vient :
=

' ' eVt R - 0
La fonction pontentiel V(z) est une fonction paire, R
¢’est-a-dire que le potentiel est le méme en deux- P
points symétriques par rapport au plan de la dis-
tribution.

%‘“ Quelle que soit la répartition exacte des charges a la surface de la sphere,

celles-ci sont toutes a la distance R du point O . Le potentiel créé en O est donc :
= Q .
dmegR

V(0)

éﬂ 1) En appliquant le théoreme de I'énergie cinétique aux élec-

trons de charge —e: Aég =W = — A% = + eV). La vitesse initiale étant négli-
geable, la vitesse atteinte apres accélération vaut :

2e VO
m

1
2

v =

2) Ce résultat reste valable tant que v reste trés petite devant ¢ . Nous devons donc
vérifier que : & = % my <<mc?.

Lénergie eV fournie par le champ accélérateur doit rester faible devant I'énergie de
masse de I'électron mqc?, soit :
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Corriges

=511.109V.

Vo << me?
0 e

Les tensions accélératrices des oscilloscopes n’excédant pas quelques milliers de volts,
le traitement classique est largement suffisant pour étudier le mouvement des élec-
trons accélérés.

é‘”_& Pour déterminer le potentiel, nous posons Vi, = 0.

2 R
ey, RS
R ‘\‘\\\\\“ﬁ \\f% W%
R RN \
A 0N
=S >
ey

el champ électrostatique au centre
cas étudié
centre composante E, | composante E,
q
1 dreqa 0 ’
_ q
2 dega 0 0
3 0 0 0
-W2
4 0 0 4nggal
q 5 4 71
V2 -V2
5 4—7{60[!2 4758002 41(8002

Sur les diverses représentations de potentiel suivantes, nous visualisons les cas ou le
champ £ est nul (extremum de potentiel, on dit aussi que le potentiel est stationnaire),
et les cas ot ce champ est non nul (il est alors dirigé vers les potentiels décroissants).
Ces visualisations représentent aussi 1'énergie potentielle d’une charge positive dans
cette configuration de champ : cette particule se dirigera vers les potentiels
décroissants.

7.0 a7
77 v
N o e T S e
""‘ S
AR
T

pelt La position d’équilibre de la charge Q esten O (0, 0), quel que soit le signe
de cette charge : ¢’est le seul point de champ nul.

¢+ (0 <0:Iénergie potentielle de cette charge (égale a QV(M) , le potentiel V(M)
étant celui créé par les deux charges g en A et B) ne présente pas de minimum dans
ce plan. A la rigueur, si le mouvement de la charge était limité 2 I'axe (Oy),
la position d’équilibre O serait stable.

&
N
N
AR
SRR
RORR
3 \&\é
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3. Potentiel électrostatique

¢ (> 0:I'énergie potentielle de cette charge ne présente pas de minimum dans ce
plan. A la rigueur, si le mouvement de la charge était limité a I'axe (Ox), la position
d’équilibre O serait stable.

;
/ // ‘

y
S N Vw2

';”II’II‘IIW?Zz’)%”I" '
77 la,,t"‘,l',

A\
SN

Z7522, T TATLT ALY >
G BT R T T T A A AL T AT AL P T L
e e e T T e
ZX G T AR T AT AL 72 A TA T A A
B e o e e o O Ve VT IO
B S e W T N
SR IERTRIRT 2>
2Rz
o

Remarque : Le potentiel apparaissant dans les expressions précédentes est celui créé
par les deux charges fixes q en A et B. Les documents permettent de visualiser I’al-
lure de I’énergie potentielle QV(M) dans le plan (xOy) . Une charge ne pouvant exer-
cer de force sur elle-méme, c’est bien le potentiel créé par les deux charges q en A et
B qu’il faut considérer, et non pas le potentiel total représenté ci-dessous pour q et
0>0.

‘ ‘ \
£ ““ e
LSS <
S SIS SIS
e S S e SIS
"‘ =

S

- 1) Au centre O du triangle, le champ

électrostatique est nul, et le potentiel est égal a :

_ q _ q .
Q=33 dngga 520 4
2) Les coordonnées de ces points sont
(par lecture sur le schéma ci-contre) sur les
hauteurs a 0,125 a de la base (la valeur
exacte est 0,125 8a).

Le potentiel a pour valeur en ces points :

q 1 2 q
= [———=  _|= JE———
4J'E£0Ll 0,875 ¥ 025+ (0,125)2 e 47[80[1

Le potentiel varie trés peu au centre du triangle.
Les représentations suivantes permettent de le vérifier.

Il existe bien un minimum de potentiel.

-—; 4 4 ISR I .
L 1) Le potentiel du point O est égal a V(0) = dney R (ou Q représente la

charge totale de la sphere), car toutes les charges sont a la distance R du point O.
. _ Ro .
Soit V(0) = %

2) Le potentiel est donné par la formule :

v<M>=f" L&j” o RiO2RsnG
0=041¢0 D Jg=0 470 /2 2R cos 0+ R?
e

RE|\r2 - 2rR cos 0 + R
e 9:0=%|r+zey_|r_;e|)

V(M) = %UR (constant) a I'intérieur de la sphere : le champ électrostatique est

donc nul a I'intérieur de cette sphere ; V(M) = "extérieur.

oR 1
e 4
Remarquons la continuité du potentiel a la traversée de la surface chargée. De plus,
ennotant O =4wR% o la charge totale de la sphere, le potentiel a I'extérieur de la
sphere est identique  celui créé par une charge ponctuelle Q placée en O :

0

T ey

g,,n Compte tenu du choix d’origine des potentiels, et connaissant le potentiel créé

par un fil rectiligne infini (cf. Application 1), le potentiel électrostatique créé par

A (2.
2mo) ln(’l)

laligne est :

Vi) =
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. . L r .
Les surfaces équipotentielles caractérisées par 72 =cte , sont donc des cylindres
1

d’axe parallele a (0z) si le potentiel est non nul ; I'équipotentielle V =0 correspond
au plan (yOz) .

23'550‘/0

Notant k = exp

) , 'équation cartésienne du cylindre de potentiel Vjest :

2

al+ k) [k |
(-8 (-1
a2
Son centre est au point d’abscisse — de I'axe (Ox), son rayon vaut _Ja
(k-1 K- 1}
k

Les cylindres de potentiel Vi et —V{ sont symétriques I'un et I'autre par rapport

au plan (y0z) , passer de I'un a I’autre revient a changer k en % . Lorsque & (donc

le potentiel) tend vers + 0, le cylindre tend vers le fil rectiligne chargé + A ; lorsque
ktend vers 0, le cylindre tend vers le fil chargé — 1.

Les traces des cylindres équipotentiels sont, sur la figure, des cercles entourant I'un
ou I"autre des fil. Les lignes de champ s’en déduisent graphiquement car elles sont
paralleles au plan du document et perpendiculaires aux surfaces équipotentielles, orien-
tées du fil chargé positivement vers le fil chargé négativement.

L'évolution du potentiel dans I’espace est présentée ci-dessous.

Nous visualisons I'équipotentielle V =0 perpendiculaire a I'axe des deux fils.

60

4,9«»-" 1) Nous avons obtenu (exercice 8) le potentiel de la ligne :
A [
V= g, fn ‘rl) ’

1 1
avec 1 =[r2—2arcos 9+a2]2 et ry = [r2+ 2arcos(9+az]2 .

Le développement du potentiel en puissance de % donne a I'ordre le plus bas non nul :

Vch;)sﬁl

2) Le champ €lectrostatique de la ligne dipolaire s'en déduit :

= —_ cos e, + sin Be“,k
E=-gad V(r)=K|————| -

I.ll lr-" ,l'f .l’f L
! ! vt
Frd g I,u' g F

L

3) L'équation d’une équipotentielle est de la forme r =rycos 6. Il s’agit d’un
cylindre de base circulaire, d’axe paralléle a (Oz) et coupant (Ox), tangent a (0z) .

Les lignes de champ sont contenues dans des plans paralleles a (xOy). Pour un
déplacement élémentaire dr” =dre, +rdfey le long d’une ligne de champ :

d?AE:K(Sm Hdr—r;cos Hdﬁ)zzz_
est nul, donc I'équation d’une ligne de champ est de la forme r =rgsinf. Il s’agit
d’un cercle d’axe parallele a (Oz) et coupant (Oy), tangent a (Oz) . La figure ci-dessus
représente, dans un plan z =cte , quelques lignes de champ et traces de surfaces équi-
potentielles. Dans ce plan, le passage des lignes de champ aux traces des équipoten-
tielles se fait par rotation de la figure de 90° autour de I’axe (0z).

La figure ci-dessus montre le tracé du potentiel créé par cette ligne dipolaire, trés sem-
blable a celui obtenu dans /’exercice § .



Le théoreme
de Gauss

Jntio duehis™)

Le champ électrostatique (ou gravitationnel)
—

e . ) e
est li¢ linéairement a ses sources par une loi en —* .

72
Son flux a travers une surface fermée
s’exprime alors tres simplement
en fonction de la charge (ou la masse)
contenue a l’intérieur de cette surface.

Ce résultat, que nous allons établir et exploiter,
porte le nom de théoreme de Gauss, astronome,
physicien et mathématicien allemand (1777-1855).

Ses travaux, considérables,

allerent, pour la seule physique,

de la mécanique (céleste) a l’électromagnétisme,
en passant par l’optique géométrique.

OBIECTIFS

M Théoreme de Gauss.
M Utilisation.

PRI’EREQUIS

B Champ électrostatique, champ gravitationnel
B Potentiel électrostatique.
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I Flux du champ d’une charge s
n(M)

face positive
I.I. Vecteur surface

Considérons une surface élémentaire « plane » dS contenant le point M . Elle
possede deux faces (I'une d’entre elle sera nommé face négative et I’ autre face posi-

] 4 > __ face négative
tive) et une orientation bien définie dans I’espace.

Doc. 1a. Définition du vecteur sur-

Pour décrire complétement une telle surface, nous devons distinguer ses deux faces pu . s
face élémenaire dS(M).

et indiquer son orientation. Pour ce faire, nous associerons a tout élément de sur-
face dS un vecteur unitaire 1 (M) dont la direction est normale 2 la surface dS
et dont le sens est celui qui amene de la face négative a la face positive (doc. 1a).

Une description plus complete, nous conduit & introduire un vecteur surface élé- ds(M)
mentaire dS(M) = 1 (M)dS, dont la norme est égale a Iaire de chacune des faces d§( M)
de dS. 0

Lorsque la surface n’est plus €lémentaire, les orientations des €léments de surface
dS (M) sont définies par continuité a partir de I’orientation de I’'un d’entre eux
dS(My) (doc. 1b).

- Doc. 1b.
Dans le cas d’une surface fermée (doc. 1c), les vecteurs unitaires n (M)

sont toujours dirigés vers ’extérieur (normale sortante).

1.2. Flux du champ électrostatique
1.2.1. Définition

Soit E| (M) le champ électrostatique créé en M par une certaine distribution de
charges 9. Le flux élémentaire de E(M) atravers dS(M) estle scalaire d¢ défini

par: . d¢=EM).dSM). Doc. 1c. Pour une surface fermée, la
Le flux de E(M) a travers une surface (S) s’ obtient par intégrationde d¢ sur(S):  normale est dirigée vers I’extérieur.
b= do .

()

1.2.2. Flux créé par une charge ponctuelle

La charge ponctuelle ¢ placéeen O (doc.2),créeen M le champ E= 46[ 6_2,
dont le flux a travers dS(M) est: _ o r
ipo 4 &-dS0D)
47580 r2

Pour interpréter le produit scalaire €. ds. , considérons la surface d’aire dX, pro-
jeté de dS surun plan orthogonal a €, .d X représente également 1’ aire découpée
sur une sphere de centre O etderayon r=OM par un cdne de sommet O et qui
s’appuie sur le contour définissant dS. L’aire d X est une aire algébrique, positive
quand du point O on voit la face négative de dS, négative dans le cas contraire.
qd%

drgyr?
Considérons maintenant une sphere de rayon R, centréeen O. Le cone de som-
met O qui s’appuie sur le contour de dS découpe sur cette sphere une pastille

Donc nous pouvons écrire : €. dS=dScosa=dX soit: d@=

dx
d’aire dX telle que 720 = d% .
R; 1

En effet, si nous multiplions par A (coefficient positif quelconque) le rayon d’une
sphere, toutes les dimensions mesurées sur celle-ci sont multipliées par A et les ———
aires par A% : aire découpée par un cone de centre O sur une sphére de centre
O est proportionnelle au carré de son rayon.

Doc. 2. d X est le projeté de [’ aire élé-
mentaire dS surun plan orthogonal
Finalement : do = ) a @ etpassant par M .
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1.2.3. Flux a travers une surface fermée contenant la charge

Soit (S) une surface fermée entourant la charge ¢ placéeen O et (X) lasphere
de centre O etderayon R (doc. 3). Le flux €lémentaire du champ créé par la
charge ¢ atravers dS(M) est:

q €.dSM) _ q dz
4me r2 4me, R?

do=
ou d2X est I’élément de surface découpé, sur la sphere (X) de centre O et de

rayon R, parle cone de sommet O s’appuyant sur le contour de d.S .
Par intégration sur (§), il vient :

e.dS
o= L[ 2o 9 az= I unpr= L
ey Jg) 17 AmggR? )y 4megR 0

Le flux (sortant) du champ créé par une charge ¢, a travers une surface
fermée (S) contenant cette charge, est :

o= 1 f ¢.d5 _ ¢
(S)

4me, r? £

1.2.4. Flux a travers une surface fermée ne contenant pas la charge

Soit g une charge placée en O, al’extérieur de la surface fermée (S). Un cone élé-
mentaire de sommet O découpe sur (S) un nombre pair d’éléments de surface
telles que dSp, dS,, etc. La moitié de ces surfaces présentent au point O leurs
faces négatives et I’autre moitié leurs faces positives (doc. 4).

Associons ces éléments de surface deux a deux tels, par exemple, dS; et dS; et
notons respectivement d¢@; et d¢, les flux a travers ces surfaces. Ces flux élé-
mentaires sont de signes opposés et, en outre, avec les notations du document 4,
nous pouvons écrire (r; = OM| et rp = OM») :

e.dS, ¢ dX e.ds, g d=

q q
do= = — et d@,= =_ -
dmey 1} 4me, R 2 dmey  r3 4dre, R?

donc : d¢; + d ¢ =0. Par intégration sur (), il vient :

Le flux du champ créé par une charge g, a travers une surface fermée
(S) ne contenant pas cette charge, est nul :

o= 4 E;.d§_0
4ng, © r?

1.3. Flux du champ de gravitation

Les différentes expressions du flux de gravitation s’obtiennent par analogie avec
les expressions correspondantes établies en électrostatique. I1 suffit, d’une part, de
remplacer les charges ¢ parles masses m et, d’autre part, de remplacer la constante

électrostatique K = ! par la constante de gravitation changée de signe — G.
TE
Champ de gravitation créé par une masse m ponctuelle :
_ 2
E; =-Gm 2

Flux élémentaire créé par une masse m ponctuelle :

N e .dS(M) ax
d®=E,.dS(M)=-Gm rTz_G’"F'

4. Le théoréme de Gauss

Doc. 3. La charge q esta l'intérieur
de la surface (S) fermée.

Doc. 4. La charge q est a l’extérieur
de la surface (S) fermée.
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Flux a travers une surface fermée contenant la masse m :
e .dSm
Dd=-Gm f & - dS() =—4aGm .
S

r2

Flux a travers une surface fermée ne contenant pas la masse m :
e,.dS(M)
D=-Gm f =0
S

r

2 Théoréme de Gauss Text

Doc. 5. Le flux de E (créé par
Pour une distribution de charges &, les résultats précédents permettent, par utili- Q. + Q. ) a travers (S) ne dépend

sation du principe de superposition, de calculer le flux sortant du champ créé a travers  que de Qi -
une surface fermée S. Pour une charge élémentaire dg de &, la contribution au flux

total est 2_6] si dg est a I'intérieur de S, et nulle si dg est a I’extérieur de S (doc. 5).

0

Le flux sortant du champ d’une distribution & 2 travers une surface
fermée S est égal a la charge de 9 située a I’intérieur de S divisée par ¢ :

q;:# E,d§=%, avec S = oy dS.
S 0

Pour le champ gravitationnel, le théoreme de Gauss s’énonce de facon analogue :

Le flux sortant du champ d’une distribution & de masses a travers une
surface fermée S est égal a la masse M, située a I’intérieur de S mul-
tipliée par —4nG :

0= f{ a5 = dnGo,

Remarque : Le caractere remarquable de ce résultat est dii seulement au fait que la

; . . . . e
dépendance du champ a la distance r d’observation est une loi en —2 .
r

3 Conséquences du théoréme de Gauss

3.1. Propriétés générales d’un champ électrostatique

Ayant postulé la loi de Coulomb et la linéarité, nous avons montré que le champ
électrostatique était :

 un champ de circulation nulle sur un contour fermé, c’est-a-dire un champ de
gradient ;

 un champ lié a ses sources (les charges) par le théoreme de Gauss.

1l est possible de montrer que, réciproquement, ces deux propriétés permettent de
retrouver la loi de Coulomb.

Le théoreme de Gauss et le caractere conservatif de la circulation permettent
une étude complete du champ électrostatique.

L’application suivante illustre I’étude du comportement local du champ a I’aide de
ces outils.



Application 1

Champ au voisinage

forme o :

7 9 _
E_Zsoz 1

et sa valeur sur 'axe a l'ordre un en r.

le disque en un point quelconque.

est liée a la valeur du champ sur ’axe par :
dE, ..
Er=—5 1"

représenté sur le document 6, évaluer :
Ez (r,2) _Ez (axe) -

Z Z

de ’axe de révolution d’une distribution

Nous avons déja calculé le champ créé sur son axe par
un disque de rayon R portant la charge surfacique uni-

Cherchons maintenant a déterminer I’expression du
champ a faible distance, notée r, de I’axe du disque.
Nous nous contenterons d’établir I'écart entre ce champ

1) En utilisant les symétries du probleme, simplifier a
priori les composantes, en coordonnées cylindriques
d’axe (z'7) , du champ électrostatique créé par

2) Enutilisant une surface de Gauss ayant la forme d’un
petit cylindre d’axe (z°z), de rayon r et de hauteur dz
(doc. 6), montrer que la composante radiale du champ

3) Considérant le petit contour rectangulaire (C)

B
A z+dz

©)

4. Le théoréme de Gauss

1) Notons M le point de coordonnées cylindriques
(r, 0, 7). Le plan contenant le point M et ’axe (z’z) est
un plan de symétrie de la distribution de charges, par
conséquent Eg=0.La distribution possede de plus la symé-
trie de révolution autour de 1’axe (z’z), donc :

E =E (r,2)¢,+E,(r,2)e,.

2) Appliquons le théoréme de Gauss a la surface
fermée proposée. Elle ne contient aucune charge créant
le champ étudié. Nous obtenons, en ne considérant que
les termes d’ordre d’approximation le plus simple :

mr? E, (0, z+dz) -2 E, (0, 2)

+2nrdz.E . (r,z) =0,
ceci nous donne bien :

dE, (@)
Er(r,z)=_f<z<m>()) .

[\

dz

3) Lacirculation du champ électrostatique sur le contour
fermé (C) est nulle. De plus, compte tenu du résultat pré-
cédent, nous constatons que les contributions a cette cir-
culation des parties AB et CD du contour sont d’ordre
deux en r . Nous en déduisons :

-E (r,2)dz +E, (axe)(Z) dz=0
a des termes d’ordre supérieur ou égal a deux en r pres.

Ce résultat pourrait &tre obtenu par des considérations de
symétrie : tout plan contenant 1’axe (z’z) est un plan-
miroir de la distribution, donc E;, est une fonction paire
de y (donc de r) et son développement limité ne peut
pas contenir de termes en puissance impaire de y (donc
de r).

Regroupant les résultats de 2) et 3), nous pouvons écrire
au voisinage de 1’axe :

E(r,2) = E;me) @ &,

e,+0e.|+

+ r|—

l dEZ(axc)(Z)
2 dz

3.2. Conservation du flux du champ

En I’absence de charges, le flux du champ électrostatique est conservatif : le
flux est le méme a travers toutes les sections d’un méme tube de champ.

65

© Hachette Livre ~ H Prépa | Electromagnétisme, I année, MPSPCSI-PTS| ~La photocopie non autorisée est un délic



4. Le théoréme de Gauss

© Hachette Livre ~ H Prépa | Electromagnétisme, I"® année, MPS-PCSI-PTS| - La photocopie non autorisée est un délic

Application 2

En P’absence de charges, le flux du champ
électrostatique est conservatif

1) Montrer qu’en I’absence de charges le flux du champ
électrostatique est le méme a travers toutes les sections
S1,S8, ... (doc. T) d’un méme tube de champ. Les sur-
faces étant toutes orientées dans le méme sens.

2) Sur le document 7, out le tube de champ a tendance a
s’évaser lorsque nous nous déplacons en suivant les
lignes de champ, quel est le comportement qualitative-
ment attendu pour la norme du champ électrostatique a I'in-
térieur du tube ?

tube de champ
Doc. 7.

1) Considérons deux sections S; et S, du tube (doc. 8),
et notons @; et P, les flux du champ a travers ces deux
sections. Soit § la surface fermée (avec les normales
orientées vers I’extérieur) constituée de la réunion de
A\ © (notée ainsi a cause du changement d’orientation),
Sy et St, la surface du trongon tube permettant de refer-
mer le tout. Le champ étant tangent aux parois du tube,
son flux a travers S; est nul, donc :
b5y =P, + Dy=-D) + D,.

Par hypothese, la surface S ne renferme aucune charge,
donc @5y = 0 et @ = P, . La conservation du flux
du champ le long du tube vide de charges est ainsi prouvée.

2) Le flux est conservatif et si la section du tube aug-
mente, la norme du champ doit diminuer.

S

3.3. Extrema du potentiel électrostatique

Existe-t-il des extrema de potentiel
dans une zone sans charge ?

Montrer qualitativement que le potentiel électrostatique ne
possede pas d’extremum en dehors des charges.

Imaginons une région vide de charges, ou le potentiel
électrostatique posséderait un extremum en un point M.
Supposons qu’il $’agisse, par exemple, d’un maximum (au
moins local). Les lignes de champ passant par
le point M doivent toutes diverger a partir de celui-ci,

Le potentiel électrostatique ne posseéde pas d’extremum en dehors des charges.

Application 3

car elles sont orientées dans le sens des potentiels décrois-
sants. Le flux du champ électrostatique a travers une petite
surface fermée contenant le point est ainsi positif, ce qui
contredit I’hypothese d’absence de charges dans la région
du point M . Ce raisonnement par I’absurde s’applique, de
méme, a un cas de potentiel minimal en M et prouve que
le potentiel électrostatique ne possede pas d’extremum en
dehors des charges.
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Calcul d’un champ électrostatique
a Paide du théoréme de Gauss

4.1. Principe du calcul

Le résultat du théoreme de Gauss est remarquablement simple dans sa formulation.
Pour une distribution de charges connue, on peut penser calculer le flux du champ
a travers une surface fermée, puis en déduire I’expression du champ. Cette méthode
est séduisante puisqu’elle permet de s’affranchir du calcul du champ (ou du potentiel)
al’aide d’expressions intégrales généralement assez contraignantes. Elle n’est toutefois
envisageable que lorsque le lien entre le calcul du flux et le champ reste élémentaire :
champ électrostatique d’expression déja bien simplifiée, surface de géométrie
simple..., c’est-a-dire lorsque la distribution de charges posséde de bonnes symétries.

Le calcul d’un champ électrostatique a I’aide du théoréme de Gauss n’est en géné-
ral envisageable que dans des cas de distributions de charges a symétries élevées
tels que ceux développés ici.

Dans ces conditions, le principe de calcul correspond a la démarche suivante :

Le théoreme de Gauss constitue un outil de calcul rapide du champ
électrostatique créé par une distribution de charges possédant une symétrie
élevée : apres détermination de la forme du champ, a I’aide de considé-
rations de symétrie, I’application du théoreme de Gauss a une surface fer-
mée, de géométrie adaptée aux symétries du probleme, permet de
déterminer I’amplitude du champ.

4.1.1. Premiére étape : considérations de symétries

11 faut obtenir, a I’aide des symétries de la distribution, la forme du champ électro-
statique :

* utilisation de plans de symétrie ou antisymétrie pour déterminer sa direction ;

* utilisation d’invariance par rotation ou translation pour réduire la dépendance de
ses composantes vis-a-vis des coordonnées (un choix de coordonnées adapté a
la symétrie du probleme est évidemment indispensable).

4.1.2. Deuxiéme étape : choix de la surface de Gauss

La forme obtenue pour le champ détermine le choix d’une surface de Gauss
rendant élémentaire le calcul du flux. Cette surface, dite de Gauss, doit étre fermée
et elle doit passer par le point M ou on veut calculer le champ.

4.1.3. Troisiéme étape : application du théoréme de Gauss

Lapplication du théoreme de Gauss acheve la détermination du champ électrostatique.

4.2. Distribution a symétrie plane

A titre d’exemple, nous nous intéressons a la détermination du champ créé par
une couche plane infinie, d'épaisseur e et de charge volumique p uniforme (doc. 9).

4.2.1. Premiére étape : utilisation des symétries de la distribution

Celle-ci est invariante par symétrie par rapport aux plans I1; et II, contenant

le point M ou nous cherchons a déterminer le champ, donc (doc. 10) :
E(x,y,9=E(x,y,2e;.

L’invariance du probléme par translation parallelement a (Ox), ou bien (Oy), nous
permet la simplification supplémentaire £ (x,y,z) =E(z)e’.

4. Le théoréme de Gauss

|

¥ i (S)

s M

| i

= t%
X ‘ | :

¢ <)
B /’/}

Doc. 9. Utilisation des symétries et
choix de la « surface de Gauss ». M’ est
le symétrique de M par rapport au plan
(xOy).
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Awpplication <

Notons aussi que le plan (xOy) est un plan de symétrie de la distribution. Au point
M’, symétrique du point M par rapport a ce plan, le champ E’ est symétrique
du champ E en M : la fonction E(z) est impaire : E(—z) =— E(z) .

4.2.2. Deuxiéme étape : choix de la « surface de Gauss »

Une surface fermée (S) permettant un calcul aisé du flux doit posséder des parties
planes a z =cte , le caractére impair de E(z) nous conduisant naturellement au
choix du document 9. Le flux du champ a travers cette surface fermée est :

& =SE(z) - SE(-7) = 2SE(z) .

4.2.3. Troisieme étape : application du théoreéme de Gauss
Appliquons le théoréme de Gauss a cette surface :

v eas 10zl &1 28ER) = 0F
cas 1.0 <lzl< 5 D=y
. e _ pSe
e cas2: lzl= 5 2S8E(z) = &
Nous en déduisons :
esi 0<lzl< 3 :Fz’z—;e?z;
.« g$ N pe . _
si > |zl : E 26, signe (z) e ;,
et e, _ pe _ey__ pe,
c’est-a-dire E(z>2) 2¢, et E(z< 2) 26,

Nous pouvons en déduire le potentiel créé, en faisant par exemple le choix V=0 sur

le plan z = 0. E, et E) étant nuls, le potentiel ne dépend que de la variable z ,

avec (il—v = — E, . Raccordant le potentiel par continuité aux extrémités des
L,

intervalles caractéristiques, nous avons :
e pz?

3 :V:_TEO;

o e v pedz]-e)
si > < |zl : V__T.

esi 0=zl

Et la fonction potentiel V(z) est paire (doc. 10).

.1) D'etermlner le champ créé par une nappe plane Finalement E = -2 signe (2) €, .
infinie de charge surfacique o uniforme. 2¢g, :
2) Reprenant I’expression du champ électrostatique créé 2) En un point d’abscisse z de ’axe du disque, nous
sur son axe par un disque de rayon R portant une charge avions obtenu :
surfacique o uniforme, évaluer la hauteur h maximale . | : ‘
pour laguelle nous pouvons assimiler le disque a un plan E=9[1_ s signe () e .
infini sans commettre une erreur relative supérieure a 2¢g ( RZ+ ,2)2
<

1 % pour le calcul du champ.
1) Les propriétés de symétrie utilisées pour le cas de la Nous pouvons confondre cette valeur avec : ZL signe(z),
couchg: sont encore valables, donc : €o

E (x,y,2) =EQR)e,,avec E(-7) =-E(). avec une précision relative inférieure a 1 % si |z | <h,

o s ~ h - i R
L’application du théoreme de Gauss au méme type ~ avec ————— =001, soit:h~ 100"
de surface nous donne E (z > 0) = % . (RZ + hz)i
0

E
pe | |
2¢, !
e |
| o e
| 2
1 pe
,,,,,, _pe
| 26‘0
\%4
_£ e
2 0 2 4
i |
|
| |

Doc. 10. Champ E et potentiel V créés
par une onde plane infinie d’épaisseur
e et de charge volumique p uniforme.
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4.3. Distribution a symétrie cylindrique
L’exemple de distribution a symétrie cylindrique que nous allons traiter correspond

aun cylindre d’axe noté (Oz) et de rayon R a I'intérieur duquel se trouve une charge
volumique uniformément répartie p .

4.3.1. Premiére étape : utilisation des symétries de la distribution
En un point M de ’espace passent deux plans de symétrie de la distribution : IT;
qui contient le point M et I’axe (Oz), et 1, perpendiculaire a (Oz) qui contient le
point M (doc. 12). Nous en déduisons, en coordonnées cylindriques d’axe (Oz) :

E =E(r,0,2¢€,.
Les invariances du probléme par translation parallelement a (Oz) et par rotation
autour de cet axe amenent les simplifications supplémentaires £ =E(r) e, .

4.3.2. Deuxiéme étape : choix de la surface de Gauss

Une surface (S) cylindrique d’axe (Oz) et de rayon r, fermée par deux disques sépa-
rés par une hauteur arbitraire & (doc. 11), constitue une surface de Gauss adaptée
a la géométrie du probleme. Le flux du champ a travers cette surface fermée s’écrit
simplement @ = 2mrhE(r), puisque ce flux est nul a travers les deux disques.

4.3.3. Troisieme étape : application du théoréme de Gauss

La charge intérieure a cette surface est :
OQint =pnr2h,si r<R et Q= pnR%*h,si r>R.

Nous en déduisons :

— or
°r<R:E=T%e,;
2
g PR
r>R: E = ey €.

Les inégalités pouvant étre étendues au sens large puisque le champ créé par cette
distribution volumique est continu.

Remarque : Le calcul du champ a l’aide du théoreme de Gauss est remarquable-
ment simple. Pour un cylindre chargé de hauteur finie, le théoreme de Gauss serait
bien entendu applicable, mais malheureusement inutilisable (les plans paralleles
a (xOy) ne sont plus des plans de symétrie de la distribution de charges).

G [0V o L(aV) (V)
Utilisant £ =—grad V = - (Or) €= 7 (89) €y— (6z) €, , nous obtenons
V(r, 0, 7) = V(r), et en raccordant la solution par continuité en » = R :
L, PR*=1?) ,
r<R:V= 2e, +Vy s
PR*\ (R
e r>R:V=-|"— 1n(f) + V.
2¢ r

Vo étant une constante arbitraire (indétermination du potentiel) ; notons qu’il est
impossible de fixer V =0 a ’infini car il y a des charges a I’infini.

E(r) et V(r) sont représentés sur le document 12. Une représentation de V(r)
dans I’espace est donnée sur le document 13.

Doc. 13.
Potentiel créé par un cylindre uniformément chargé en volume.
L’équipotentielle V =0 est choisie sur la surface du cylindre.

4. Le théoréme de Gauss

Q

D I
l

i

|

\
vy

I,

Doc. 11. Surface de Gauss pour une dis-
tribution a symétrie cylindrique.

PRAE
280 |
i ;
o R
%
Vo\R r
(0]

Doc. 12. Champ et potentiel d’un
cylindre infini (V=0 pour r=R).
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Application J

Fil infini de charge linéique uniforme 2

2ne

=8

Reprendre 1’étude précédente avec un fil infini portant EM) =

une densité linéique de charge uniforme. Il'y a des charges a I'infini, donc pour la détermination

Vet At . N du potentiel, nous devons prendre une référence de poten-
Les considérations de symétrie conduisent encore a : . .. .
tiel nulle a distance finie (en r = a par exemple) ; cela

EM)=E(r)e, et V(M)=V(r). donne :

Appliquons le théoreme de Gauss a la méme surface fer- 2 ,
v =- 2me, In (5) :

mée. Nous avons : E2nrh= % ; 1l vient alors :
0

Remarques
* Le champ n’est évidemment pas défini sur le fil, car cette distribution linéique
correspond a une distribution volumique locale tendant vers ’infini.

» Comme précédemment, le théoreme de Gauss est valable pour le champ électro-
statique créé par un segment uniformément chargé, mais totalement inapplicable
pour le calcul de ce champ !

Application o

Cylindre infini de charge surfacique uniforme p AE

Reprendre I’étude précédente pour un cylindre infini 2¢ | !

portant la charge surfacique uniforme o . : -
Les considérations de symétrie conduisent encore a 0 ‘
E = E(r)e,et V= WV(r). Appliquons le théoreme de Gauss

a la méme surface fermée. Nous avons maintenant : \%
Oint=0,s1 r<R et Qy=2nRho,si r>R.

Il vient alors : )
e r<R :E =0 .Ilestremarquable de trouver que le

champ est nul partout a 'intérieur de la cavité chargée

en surface.

R .7 — [OR)
r>RE _(8_07') €.

Doc. 14. Par convention V=V pour r=R.

Les inégalités restent strictes, le champ électrostatique

subissant la discontinuité normale (attendue !) 8% ala

traversée de la surface chargée. Le potentiel s’en déduit :
e r<R:V(r)=Vy;
« r>R:V() = V0+(‘LR) In (5) .
£ r
Remarquons que pour r=R, le champ électrique n’est
pas défini : la répartition surfacique de charge corres-
pond a une répartition volumique locale infinie.
Doc. 15. >
Potentiel créé par un cylindre uniformément chargé en surface
(0> 0). Onvisualise I'équipotentielle de potentiel
V=0 pour r> R (Vy>0).

» Pour s’entrainer : ex. | et 7.
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4.4. Distribution a symétrie sphérique
L’exemple type traité correspond a une charge volumique p distribuée uniformé-

ment & I'intérieur d’une boule de centre O et de rayon R . Nous noterons :

= %J‘ER3p

la charge totale de cette boule (doc. 16).

4.4.1. Premiére étape : utilisation des symétries de la distribution

Considérant deux plans perpendiculaires I1; et II, contenant le centre de symétrie
O et le point M oll nous cherchons a déterminer le champ, nous obtenons en
coordonnées sphériques E (r, 0, ¢) =E (r, 0, ¢) €, (doc. 16) .

L’invariance de la distribution par rotation autour de tout axe contenant le centre
O apporte la simplification E (r, 0, ¢) = E(7) ¢, .
4.4.2. Deuxiéme étape : choix de la surface de Gauss

La surface fermée adaptée a cette géométrie est naturellement une sphere de centre
O et de rayon r . Le flux du champ 2 travers cette surface est @ =4nr2E(r) .

4.4.3. Troisieme étape : application du théoréme de Gauss

La charge intérieure a cette surface est :

Qim=%nr3p,si r<R et Qim=%nR3p,si r>R.

Nous obtenons ainsi le champ continu de cette distribution volumique :

F=Pa- 4 ;.
riR.E—360er—4n€0R3 er;

. pR
orBR'E—p e = qi?,.

= - e =
3807'2 r 4758() r2

Notons qu’a lextérieur de la boule chargée, le champ créé est identique a celui d’une
charge q placée au centre de la sphere.

Remarque : p étant fini, le champ est partout continu et défini, méme pour r =R .

Le potentiel, continuen r =R, s’en déduit :

P(3R> —r?) g 3R*-r?
o = : =— - +4 = —_— + .
r<R V) 6¢, Vo 4, 2R3 Vos
pR3 q 1
° = . = = - =
r=R :V(r) 36 +Vy Ay +Vy.

Aucune charge ne se trouvant a I’infini, nous pouvons convenir que V(r — ) =0
d’ot V=0.
E(r) et V(r) sontreprésentés sur le document 17.

4.4.4. Cas d’une distribution de masses

Le cas d’une distribution de masses a symétrie sphérique se traite de facon ana-

logue. Notons 4 la masse volumique uniforme a I’intérieur d’une sphere de rayon

R etm= %J‘CR3 M la masse totale de cette sphere. En remplacant g par m et

K= 47580 par — G, il vient :

4. Le théoréme de Gauss

11,

Doc. 16. Surface de Gauss sphérique
par une distribution a symétrie sphé-
rique.

E
PRI ____
380 |
l
|
0 R r
%
|
|
|
Vo 1
R r

Doc. 17. Champ et potentiel d’une boule
chargée.
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» Champ créé par cette distribution volumique :

r<R: E——%ure, - Gm ée_;
= 4G R - 1 -
r=R:Eg=~ T U= 2 r=—Gmﬁe,.
* Potentiel créé par la sphere :
3R* -2
r<R: V_—ZﬂiG LUGR =) +Vy=—Gm (2)
2R
F=R:V=- 4”GuR_ +Vo=-Gm L 4.

+V.

A Pextérieur de la sphere, le champ et le potentiel de gravitation sont identiques 2

ceux créés par une masse m placée au centre de la sphere.

Awpplication 7

Sphére de charge surfacique uniforme

Reprendre cette étude pour une spheére de centre O et de
rayon R portant la charge surfacique uniforme o . Sa
charge est notée q =4nR*o.

La symétrie sphérique du probleme conduit a :

E =E(rn e, et V=V0).
Lapplication du théoreme de Gauss a la sphere de rayon r,
avec Qjy =0,si r<R et Oy =4nR20=q, si r=R.

I en résulte que :
e r<R: F=6;
. OR?
er=R:.E = e, L

5 6= 4o 5 &
ggrt " dmey 2 7T

La discontinuité normale 82 du champ est obtenue en
0
r=R.

Le potentiel, continu en » =R, s’en déduit :

q
o = 0 = .
rsR: V(in=Vy+ -

« r=R: V()= "R + Vo= 21

dne +V.

On pourrait, ici, choisir V=0 a I'infini ce qui donnerait
Vo=0.

o E
o| M
o0 v R r
Vol ‘
i
o0 R T

Doc. 18. Allures de E(r) et V(r).

» Pour s’entrainer : ex. 8 et 9.
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4. Le théoréme de Gauss

A el € Q F R SGae oo

® THEOREME DE GAUSS

* Le flux sortant du champ d’une distribution % a travers une surface fermée (S) est égal a la charge de 9
située a I'intérieur de S divisée par & :

D= E.dS = Qi“‘, avec dS =7y dS.

* Le théoreme de Gauss et le caractere conservatif de la circulation permettent une étude complete du champ
électrostatique.

* En I’absence de charges, le flux du champ électrostatique est conservatif : le flux est le méme a travers toutes
les sections d’un méme tube de champ.

* Le potentiel électrostatique ne possede pas d’extremum en dehors des charges.

¢ Le flux sortant du champ de gravitation d’une distribution % de masses, a travers une surface fermée S est égal a
la masse My, située a I'intérieur de (S) multipliée par — 4nG :

Q= ﬁs E,.dS =-4nGM,,, .

* A I’extérieur d’un astre 2 symétrie de révolution, le champ de gravitation est le méme que celui créé par un point
matériel placé au centre de I’astre et dont la masse est celle de I’astre.

@ DETERMINATION D’UN CHAMP A L’AIDE DU THEOREME DE GAUSS

Le théoreme de Gauss constitue un outil de calcul rapide du champ électrostatique créé par une distribution de
charges possédant une symétrie élevée : apres détermination de la forme du champ, a 1’aide de considérations
de symétrie, I’application du théoréme de Gauss a une surface fermée, de géométrie adaptée aux symétries du
probleme, permet de déterminer 1’amplitude du champ.
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Contrite rapide

v Donner I’expression du flux élémentaire d@ du champ électrique E créé par une charge ponctuelle g placée
en O.

¢ Enoncer le théoréme de Gauss pour le champ électrostatique.

¢ Enoncer le théoréme de Gauss pour le champ de gravitation.
v’ Démontrer que le potentiel électrostatique ne posseéde pas d’extremum en une région vide de charges.
v’ Démontrer qu’en I’absence de charges, le flux du champ €lectrostatique est conservatif.
v’ Montrer qu’en I’absence de charges, lorsque la section d’un tube de champ diminue, le champ augmente en norme.
v’ Qu’appelle-t-on surface de Gauss et comment la détermine-t-on ?
v’ Calculer rapidement le champ électrostatique créé par :
e une sphere uniformément chargée en volume ;
e un cylindre infini uniformément chargé en volume ;
e un plan uniformément chargé en surface ;

e un fil rectiligne infini.

Du tac au tac (Vrai ou faux)

I. Une charge ponctuelle q, placéedanslechamp 5. Soit (S|) et (S2) deux surfaces ouvertes qui

d’une distribution de charges, ne trouve aucune s’appuient sur la méme courbe fermée (C). Le
position d’équilibre stable. flux du champ électrostatique est le méme a tra-
Q Vrai O Faux vers ces deux surfaces, en I’absence de charges

comprises entre (S)) et (S2).

2. Leflux @ atravers une surface fermée (S) tra-
cée dans une distribution volumique de charges

p(M) est: &= Eiofff p(M)dr . 6. Le champ de gravitation créé par la Terre,

supposée a symétrie sphérique, est le méme
que celui créé par un point matériel placé au
centre de la Terre et dont la masse est celle de
la Terre.

U Vrai 4 Faux

U Vrai 4 Faux

U Vrai O Faux

3. Le flux @ atravers une surface fermée (S) por-
tant une distribution surfacique de charges o(M)
est: o= ELO f:f o(M)dr .

. 7. A Pextérieur d’un astre de masse M asymétrie

3 Vrai O Faux . . )z . . , .

sphérique, I’énergie potentielle d’un point

. . N matériel de masse m situéaladistance r est:
4. Le flux du champ électrique a travers une sur- GMm

face ouverte ne peut jamais étre nul. €p(r) =- r TVo.
U Vrai Q Faux Q Vrai O Faux

» Solution, page 77.




Exercices

4. Le théoréme de Gauss

.7

o
Examiner le cas d’un fil rectiligne infini en I’obtenant comme
une limite a définir du cas du cylindre infini.

Champ créé par un fil rectiligne infini

% Flux du champ créé par une charge
a travers un disque

Une charge ponctuelle g est pla-
céeen A surI’axe (Oz) d’un
disque de centre O et de rayon
a. “Im
Le disque est orienté par le vec-
teur unitaire e, etonnote ¢ le O~_a

demi-angle au sommet du cone B
de sommet A et de base le
disque. d
La distance AO estnotée d .
Calculer le flux @ du champ A
créé par la charge ¢ a travers le q
disque.

S

S

. Flux : analogie avec un filet a papillon

Soit un « filet a papillon » d’ouverture circulaire R (donc de
section 3 =mR?2) et dont le filet a une surface totale S ; il
est placé dans un champ électrostatique E . Dans la zone de
I’espace considérée, il n’y a aucune charge. Ce filet permet
d’accéder a la valeur moyenne du champ, en lisant le flux entrant
(valeur donnée par le filet) de ce champ a travers « ce filet a
champ ».

1) Le champ E_est uniforme.

Comment faut-il placer ce filet pour mesurer £ ?

La surface du filet est-elle génante ?

Est-il possible de connaitre la direction du champ E ?

VA
RN
JRREN

LN

e

[
\
N\

&

2) Le champ E est non uniforme dans une zone sans charge.
Ou placer ce filet pour capter le maximum de flux ?
Ou le champ est-il maximum ?

é;,, Flux du champ créé par une charge
a travers un carré

Une charge ponctuelle ¢
est placée en A sur ’axe
d’un carré de coté a . La
distance entre la charge et
le plan est :
AO =

(SIS

Calculer le flux @ du
champ créé par la charge
q atravers le carré.

é: Loi locale de Maxwell-Gauss,
équation de Poisson

Nous établirons ici 1’ex-
pression de ces lois en coor-
données cartésiennes.

z
B (x+dx,y+dy, z+dz)

Considérons le parallélépi-
pede rectangle élémentaire
représenté sur le schéma.
Les points A et B ont pour
coordonnées cartésiennes
respectives (x,y, z) et:
(x +dx,y+dy,z+dz).
La charge volumique du milieu est notée p .
En appliquant le théoreme de Gauss au parallélépipede, établir :
aEx aE}’ aEz _ P
ox Tay Yoz Te
En déduire I’équation différentielle liant le potentiel a la den-
sité volumique de charges, appelée équation de Poisson.

A, y,2) %

- Double couche chargée

Calculer le champ et le potentiel pour une double couche char-
gée p=po pour 0<z<eet p=-pypour —e<z<0.
On prendra V=0 sur le plan (x, y) (z=0).
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Exercices

zﬂ Distribution cylindrique

correspondant a un champ donné
Un champ & symétrie cylindrique £ = E(r) €, a pour expres-
sion E = (An) &, ,si r<aet E = (2) é.sir>a.

Déterminer la distribution de charges qui crée ce champ, puis
le potentiel électrostatique associé.

e Cavité dans une boule

uniformément chargée

Une boule de rayon a portant la
charge volumique uniformé-
ment répartie p possede une
cavité sphérique de rayon b vide
de charges. Déterminer le champ
dans la cavité.

Déterminer le champ a X

e 2
I'intérieur de la sphere. o =aycos 0

NO)

/ﬁLignes de champ d’un doublet de charges
dans I’approximation dipolaire

9

~ ... Couches de glissement

ligne de champ

a)

Le schéma a) représente une sphere de centre O et rayon R
portant la charge surfacique o =0 cos 6.

Le schéma b) représente deux boules de rayon R, de centres
respectifs O, et O_ d’abcisses + % et — % sur I’axe
(Oz), chargées uniformément avec les densités volumiques
respectives + po et — pg -

Montrer que la premiere distribution peut étre obtenue comme
la limite de la seconde lorsque la distance a tend vers zéro, a
condition d’imposer une relation particuliere liant p , a et oy.

:Iw-*' Champ créé par une sphére

Une boule de rayon a porte la charge surfacique : o = oy cos 6
sur sa surface, avec oy > 0. Cette répartition de charges est
a symétrie de révolution autour de 1’axe (0z).

Deux charges opposées — g et +¢ sont placées sur I’axe (Oz)

aux points d’abscisses — % et +%

AT’aide du théoréme de Gauss, montrer que 1’équation d’une
ligne de champ telle que celle représentée sur la figure est
COS 0¢p —COS (X =cte.

respectivement.

:L,Z..«:« Nuage électronique et énergie d’ionisation
Un systeme de charges crée le potentiel a symétrie sphérique :

V(r) = 4;20r (1+ ) exp[- 2] @>0.

Calculer Q(r), charge comprise dans la sphere de rayon r .

Caractériser la distribution de charges correspondant a ce
potentiel.

Définir, puis exprimer 1’énergie de liaison de ce systeme.

/LéJ Allure des lignes du champ
électrostatique E

Les schémas ci-apres représentent, dans un plan (x, y)
(z =cte), quelques cartes de champs bidimensionnels de la
forme :

E (x,52=E(xyext+E (xy)ey.



4. Le théoréme de Gauss

Préciser, dans chaque cas, s’il peut s’agir d’un champ élec-
trostatique, et si oui, indiquer si des charges sont présentes

dans la région représentée.

y a)
Z
y
— —
— —
—> —>
— —
@
b4 X z
Corrigeé
Solution du tac au tac, p. 74. 4. Faux; Z- A
I. Vrai; 5. Vrai; e Considérons la sphere de
2. Vrai; 6. Vrai; centre A et de rayon :
3. Faux; 1. Vrai.

— Le cylindre infini porte une

charge A =nR?p par unité de longueur.
Gardant ce terme constant en faisant
tendre R vers (), nous obtenons une dis-
tribution limite correspondant a un fil
rectiligne infini portant la charge
linéique A.

Lecas > R étant alors le seul utilisable,
nous constatons que :

S
N
\
\
\
\
\

_ pR2 . : :
E = 2— er I I
& 1 1
peut aussi s"écrire : E= ﬁ ¢ Nous retrouvons le résultat établi au chapitre 3,
0

ainsi que celui de I'Application 5 du présent chapitre.

R=vVd* +a?.

La circonférence (C) du disque est
tracée sur cette sphere. D’apres ce
quiaété vuen § 1.2.2, le flux a tra-
vers le disque est égal au flux a tra-
vers la calotte sphérique délimitée

par la circonférence (C) :
o= 1 2

dey p2
ou X est I'aire de la calotte sphé-
rique.

En coordonnées sphériques, 1'élément d’aire sur une sphere de rayon R est :

d®Z=Rsin6d6.Rdg,
ce qui donne par intégration sur la calotte sphérique :

a 2
=R L sinadefo do =2aRY(1-cosa).

En conclusion: &= L (I-cos@).
280
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Corriges
S

w Commentaire
et S

Dans une zone sans charge, donc dans une zone ou le flux du champ E est conser-
vatif, la surface § du filet de ce «filet a papillon » n’intervient jamais dans le nombre
de papillons captés, donc dans la valeur du flux capté. Ce flux ne dépend que du
contour sur lequel s’appuie cette surface, donc de la section circulaire de I'ouverture
du filet.

P o
[ LN RN
\ RSN IR
N LN
)
0 max. positif

1) 1l faut que la normale a I"ouverture circulaire du filet soit paralléle au champ pour
obtenir un flux extremum. Si le signe du flux entrant (valeur lue) est positif et maxi-
mum, E est perpendiculaire a I"ouverture du filet et entrant.

2) Nous sommes dans une zone de I'espace sans charge. Le flux du champ E estdonc
conservatif, ¢’est-a-dire que le flux de £ a travers un tube de champ est invariant. Le
champ est donc d’autant plus important que les lignes de champ se resserrent. Pour
avoir un flux maximum, il faut donc déplacer I’ ouverture du filet vers la droite, la o
les lignes de champ se resserrent.

é;, Complétons la figure en faisant de A le centre d’un cube de coté a. Le flux

a travers les six faces du cube est @;=6@. Pour évaluer @, il suffit de conside-

rer une sphere (S) de centre A et de rayon R arbitraire. D’apres la remarque du
§ 1.2.2,, le flux a travers le cube est égal au flux a travers la sphere (S).

2
Donc ¢l: L%_R=l

e et, en définitive, le flux a travers le carré est : ¢= 4 .
T

R? 6¢

5

— Considérons la surface fermée enveloppant le parallélépipede et appliquons

le théoreme de Gauss.
Le flux sortant du champ a travers cette surface fermée élémentaire est donné par (en
ne faisant apparaitre que les termes « utiles », c’est-a-dire en se limitant aux termes
de méme ordre non nul) :
+dxdy.E,(xy,z+dz) +dydz.E,(x +dx ), 2)

+tdxdz.Ey(xy+dy2)

—dxdy.E,(x 32 —dydz.E,(x, y2) —dx dz.Ey (2.
Cette quantité est égale a la charge élémentaire située a I'intérieur de ce volume :

. 0E, OE, OE, 0
ysoit dxdydz [—24—+—|=|&
soit dxdy Z(0x+<'))'+<'): ('30

dxdydz.

dxdy dz. (p

)

" N+ aVy . [aV) v\
En utilisant la relation E =— grad V=- (TZ) @y= (% ey = (%) ¢, nous

_ P
2 &

. 22y a2
en déduisons v + v
a2 oy

appelée équation de Poisson.
ox= 0

—— Chacune des couches crée un champ E etle champ E deladouble couche

s’obtient par superposition des deux champs : E=E+ E_i . Les champs E s'ob-
tiennent par application du théoreme de Gauss comme indiqué en § 4.2.
+ Couche (1) de densité py:

sinon :

sinon :

Autotal :
e<z: E=E]+E, =0

) =
0szs<e: E=E +E) =£—0(:—e)e:

= s P <
—eszs0: E=E +E2:%00(z+e)e:

1<-e: E=E] +E;=0.

Le champ est nul en dehors de la double couche.
Nous en déduisons I'expression du potentiel (raccordement par continuité aux change-
ments de zone) :

esz:V= Po 2
280

0<z<e:V= P 0e-2)
2¢,

—e<7=<0:V= p70(2@z+z2)
2e,

1<-e:V= ;poe2

2¢
E V
PoC | ___
280 ;
—e e - |
Z i e Z
|
= poe’
28()
—Po¢€
280




4. Le théoréme de Gauss

.e"‘; Le systeme est 2 symétrie de révolution cylindrique. Nous pouvons donc cher-

cher une répartition de charges ayant cette symétrie. Notons Q (r; h) la charge conte-

nue dans un cylindre d’axe (0z), de rayon r et de hauteur /. L'application du théo-

reme de Gauss a la surface fermée cylindrique délimitant cette charge nous donne :
Q) o E 0

i

(le flux sortant de E a travers les bases de ce cylindre est nul), soit :

o sir<a:Q@h) =2neyArth;

Q@ h)=2neyBh.

Déterminons la densité volumique de charges en considérant la charge. La charge

Q(r+dr, h) = Q (r, h) est contenue entre deux cylindres de rayons r et r + dr et
de hauteur /

s sir>a

2ardr.hp(r)=Q (r+dr,h) =Q(r, h) = % d

Nous obtenons ainsi :

o sir<a:p(r)=2e04;

e sir>a:p(n=0.

La quantité¢ Q (1 h) subit une discontinuité éventuelle en r =a . Cela correspond a
une charge surfacique o, répartie sur le cylindre de rayon a :

2nac=0Q(r=a")-Q(r=a"),s0it o =& (%—Aa) .

;‘i_,, Cette distribution correspond a la superposition de deux distributions & et 95 .
9 correspondant a une charge volumique p uniformément répartie dans la sphere de
centre O) etderayon a, et P a une charge volumique—p dans la sphere de centre

0, et de rayon b . Dans la cavité, donc a I'intérieur de ces deux spheres, 9 crée le

champ Ei(M): ;)70 0\M et 9, le champ EZ(M):_SLEO (ﬁff

Le champ total dans la cavité est donc égal a E M) = 3p 01 0, .

11 est uniforme dans la cavité.

cavité 1 /

IS,

plan incliné
(champ uniforme)

‘ ‘

o "““‘ “‘
:2‘:":“«:‘
SIS
eseesy

Les simulations ci-dessus montrent le tracé des lignes de champ et des équipoten-
tielles du systeme de charges, ainsi que les variations du potentiel : le champ est bien
uniforme a I'intérieur de la cavité.

gw Dans le cas a), notons dS 1'élément de surface dans la direction (6, @) en
coordonnées sphériques d’axe (0z). Cet élément de surface porte la charge :

dg=0dS=0ycos6dS.

h =alcosb|

Dans le cas b), évaluons I’élément de volume d7 dans la méme direction (6, ),
lorsque a<<R:d7=hdS =alcos6ldS.

Cet élément de volume contient la charge : dg = pya cos 6dS.

En comparant les deux expressions de la charge dg, nous pouvons considérer la sphere
chargée comme limite de I’ensemble des deux boules, lorsque a << R, en imposant
la condition : pya =cte = 0.

—:’fQ, Cette distribution correspond a la superposition de deux distributions 9 et

9, .9 correspondant a une charge volumique — p (p > 0) uniformément répar-
tie dans une sphere de centre O etderayona, et & aune charge volumique uni-
forme p répartie dans une sphere de centre —
A vz ok — | |
0, et de méme rayon a . L'équivalence p L al
des répartitions est obtenue lorsque
=lim (p0; 0y) quand 0,0, tend vers
zéro, et simultanément p vers I'infini. Les
résultats de | exercice précédent indiquent
que le champ dans la cavité est :
— 5
T P00, oy
EM) =- r__ Y%
380 350
Il est uniforme dans la cavité. -
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Corriges

ligne de champ
B

¢ Le flux du champ est conservatif en ’absence de charges

L'ensemble des lignes de champ est de révolution autour de I'axe (0z). Soit un tube
de champ engendré par la rotation d’une ligne de champ autour de I'axe (Oz). Le flux
du champ est le méme  travers les sections #; et ¥ du tube dans la mesure ou il
n'y a pas de charges dans le trongon du tube de champ situé entre ces deux sections.

+ Eerivons la conservation du flux du champ  travers ce tube de champ
Le flux du champ électrostatique E créé par une charge ¢ ponctuelle a travers un

disque ¥ quelconque est donné par ¢ = % (1 = cos @) (cf- exercice 2).
0

Lefluxde £ df aux deux charges — ¢ et +¢ atravers la surface %, s'écrit donc :
q2n(1

- c0s ap) - 2a(1 - cos ;)

o= 250

g 2n(cos ay - cos @)

SOit
250

)

d’ol l’équation cos &y —cos 01 =cte . (Notons que cette équation est a rapprocher

de I'équation 2 g; cos ; =cte obtenue dans I'exercice 10 chapitre 2, sans utiliser
i=

le théoréme de Gauss.)

12

Le champ €lectrostatique créé par cette distribution de charges est :

4L

e P 1,22}
= gradV(V)— 43'[180 r2+a ;’e ae, .

Appliquons le théoreme de Gauss a la sphere de rayon r et centre O :

0(nN=¢ E dS _604J'ljr (E )= q(1+4+2r‘)'

sphere
La répartition de charges est de symétrie sphérique autour du point 0. La charge conte-
nue entre les spheres de centre O et de rayons ret r+dr est 4xr2p(rdr,

s'identifiea Q (r +dr) —Q(r) = [@} dr,donc:
piy=-L 0 4,
42 dr a3

Cette densité de charges est toujours négative, alors que la charge totale de la

distribution est Q (r — %) =0. N’oublions cependant pas la singularité du potentiel a

I’ origine, ot il se comporte asymptotiquement comme le potentiel d’une charge

ponctuelle g placée en O : % - Nous avons Q (r— 0) =¢, ce qui prouve bien
Egr

la présence d’une charge ponctuelle positive ¢ en O entourée par un halo de charges

négatives de densité volumique p(r) et de charge globale —g¢.

L'énergie de liaison est I'énergie a fournir pour séparer la charge + ¢ du nuage de
charge négative — ¢, enI’emmenant depuis le point O jusqu’a I'infini. Cette énergie
d’ionisation vaut : g (V_(®) = V_(0)) == qV-(0), ou V_(0) désigne le poten-
tiel créé par le nuage négatif seul au point O, égal a :

- (o4 \__ 4 .
V-0 ,4ll_l>n0 ‘V(') 4n£0r)_ 4ngga
e
Par conséquent &jigison = M :

/I& *Casa

La circulation de ce champ est conservative (nulle sur toute courbe fermée). I s’ agit
d’un champ uniforme E 0=Eqe . Le potentiel dont il dérive est égala —Ex.

Le flux de ce champ a travers toute surface fermée est nul ; il n’y a pas de charges créant
ce champ dans la zone représentée, car son flux est conservatif.

*Cash
La circulation de ce champ est conservative. Les lignes de champ sont encore rectilignes
mais correspondent  un champ non uniforme. Le potentiel dont il dérive est donné par :

V) =V(0) - jor E@dx.

Le flux du champ a travers un parallélépipede rectangle de volume :

dr=dxdydz estégala dydz[E (x +dx) —E (x)] = dE(vc

dxdydz ——
Dans la zone représentée, il y a des charges réparties avec la densité :
dE(x)
8 -
= dx

*Casc
Si la fonction E (r) n’est pas continue sur une surface cylindrique, il existe sur cette
surface de discontinuité une répartition de charges surfaciques o telle que :

op=eEr ~E ).

oCas det e

Dans les deux cas la circulation du champ sur un cercle de centre O sera non nulle.
La circulation n’est donc pas conservative. Ce n’est pas un champ de nature électro-
statique. Nous verrons dans les chapitres suivants que le champ est de nature
magnétostatique dans le cas d.

Le cas e représente la superposition de deux champs : I'un de nature électrostatique,
I"autre de nature magnétostatique.



Dipodle
électrostatique

Introduehis)

Les atomes, les molécules et les milieux matériels
sont électriquement neutres.

Parfois, les barycentres des charges positives

et des charges négatives apparaissent décalés.
L’entité observée, le milieu étudié

sont alors dits polarisés.

Les propriétés électriques d’une entité polarisée
peuvent étre décrites,

en premiere approximation,

a l'aide d’un modeéle élémentaire :

le doublet de charges.

Celles d’un milieu polarisé le seraient

a l’aide d’une répartition

de doublets microscopiques

(en seconde année).

OBIECTIFS

B Modele du dipdle.
B Champ et potentiel dipolaires.

B Actions exercées par un champ sur un dipdle.

PRI’EREQUIS

B Champ électrostatique.
B Potentiel électrostatique.
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I Le modéle du dipéle

I.1. Moment dipolaire

I.1.1. Moment dipolaire d’une distribution de charges globalement
neutre

Considérons dans la distribution & 1’ensemble des charges positives dont la somme
estnotée +¢ etl’ensemble des charges négatives dont la somme vaut — ¢, ¢ étant
supposée non nulle.

Nous pouvons définir A™, le barycentre des charges positives de &/, et A~ le
barycentre des charges négatives de & .

Le moment dipolaire de la distribution est par définition: p = qm .

1l s’évalue en coulomb . metre (C.m).

I.1.2. Doublet de charges

Le modele le plus simple de dipdle est un doublet de charges opposées et séparées
par une distance que nous noterons d (doc. 1).

Un objet non chargé mais polarisé crée a grande distance un potentiel et
un champ analogues (en premiere approximation) a ceux d’un doublet de
charges de moment dipolaire p nonnul (¢ > 0):

p=qd et d=AA".

|1.2. Objets polaires

1.2.1. Molécules polaires

Ces molécules présentent au repos une séparation de charges.

Une molécule diatomique telle que le chlorure d’hydrogene HCI possede une liaison
polaire (doc. 2). Son nuage électronique est asymétrique, les électrons se trouvant
préférentiellement au voisinage de 1’atome de chlore.

Des édifices moléculaires plus complexes présenteront de méme une polarité per-
manente : la molécule d’eau H,O, triangulaire, posseéde un moment dipolaire résul-
tant de la polarité des liaisons OH. De méme la molécule d’ammoniac NH3, pyra-
midale, possede trois liaisons NH polarisées (doc. 3). Dans les molécules
polyatomiques, la présence de doublets libres sur certains atomes doit parfois étre
prise en compte.

1.2.2. Polarisation due a un champ appliqué

Un atome et une molécule peuvent aussi étre polarisés par 1’action d’un champ
appliqué : en effet, celui-ci déplace en sens opposé les charges positives et néga-
tives. Les nuages électroniques sont déformés par ce champ appliqué, les longueurs
et les angles des liaisons chimiques peuvent étre modifiés. Ces modifications, géné-
ralement faibles, correspondent a une apparition ou a un changement de la polarité
(doc. 4). On parle d’atomes ou de molécules polarisables.

Remarques

Les atomes, les ions, les molécules (polaires ou non au repos) et plus généralement
les milieux matériels sont susceptibles d’étre polarisés par un champ appliqué.
Ainsi un certain nombre de phénomenes liés a la polarisation peuvent étre obser-
vés dans la matiere.

82
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p=qd

- -y

Doc. 1. Doublet de charges.

Doc. 2. Molécule diatomique.

Doc. 3. Moments dipolaires des molé-
cules HyO et NH3 .

nuage
centre de électronique
la sphere noyau

e

Doc. 4. Polarisation d’un atome placé
dans un champ E :

p= aE, avec o> 0.



e Les ions d’un cristal ionique se trouvent déplacés par 'action d’un champ appliqué
par rapport a leur position au repos (en sens opposé pour des charges de signes
opposés), ce qui fait apparaitre de nouveaux moments dipolaires. Ce phénomeéne
porte le nom de polarisation ionique.

o Nous verrons aussi qu’un dipdle tend a s’orienter parallélement au champ qui
lui est appliqué. Un matériau contenant des entités polaires susceptibles de s’orienter
peut ainsi étre polarisé lorsqu’un champ lui est appliqué (une compétition s’en-
gage entre effet d’orientation du champ appliqué et la tendance au désordre liée
a l’agitation thermique). On parle alors de polarisation d’orientation.

» Pour s’entrainer : ex. 2.

1.2.3. Unité de moment dipolaire en chimie

Les entités chimiques ont des charges de 1’ordre de ¢ = 10~ !9 C et des dimensions
de ’ordre de ¢=10"19 m. Une unité de moment dipolaire adaptée aux besoins des
chimistes doit étre de 1’ordre de p = g = 10729 C..m. C’est pour cette raison que les
chimistes utilisent le debye (symbole : D), bien que cette unité de moment dipolaire
appartienne a un systeme d’unités actuellement abandonné.

D = %-10_29C.m.

On trouvera, sur le document 5, quelques moments de molécules polaires.

2 Potentiel et champ créés par un dipole

Nous nous limiterons au calcul et a la représentation de ces grandeurs pour le modele
du doublet.

2.1. Approximation dipolaire

Sinous nous intéressons aux effets produits par le dipdle, I’approximation dipolaire
consiste a supposer la distance a laquelle nous observons le champ créé par le dipdle
tres grande devant ses dimensions 1 r >>d .

Dans ces conditions, nous menerons les calculs en ne déterminant que les termes

d’ordre le plus bas en (d) .

7
2.2. Potentiel du dipdle

La distribution considérée (doublet) étant d’extension finie, nous pouvons choisir
le potentiel nul a linfini, et I’écrire, avec les notations du document 6 :

VM) =

k-4

dmeg\ln 1) -

Utilisant les coordonnées sphériques d’axe (0z) indiquées sur le document 6, nous
1

) d*|2 d*|2
avons ry = |r —drcosH+T et rp = r2+drcos9+7 .
, L o 2
Dans I’approximation dipolaire, nous écrirons a I’ordre un en (7) :

— ld )_ _ld
V(M) dney ((1+2 7 Cos 0+ ... (1 > rcost9+...)) .
Remarque : Notons que pour ce modele de dipdle, le second terme non nul est propor-
tionnel a i

5. Dipdle électrostatique

H,0 NH; HCI

1,85 D 1,47D 1,08 D

Doc. 5. Moments de molécules polaires.

4 d +4q v

Doc. 6. Le point M est repéré par son
vecteur position = OM ou par ses coor-
données sphériques : (1, 0, @).

Développement limité de (1 + x)*
Pour | x| << 1, nous pouvons écrire :

M A+x)%=1+ax al’ordre un ;

a-1)

= (1 +x0)%= 1+ax+a( 5 x?

el a2

a l'ordre trois.
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1

La charge totale de ce systeme étant nulle, le terme en

du potentiel s’annule ;

le premier terme non nul du développement limité est proportionnel a % 1
r

décroit beaucoup plus vite a grande distance que le potentiel d’une charge seule :

gdcos® 1 Pp.F

van = dmeyr?  Amey

En utilisant ’expression du moment dipolaire, le potentiel électrostatique
créé par un dipole placé au point O, a I’ordre le plus bas en puissances de

d . _pcosb ﬂ
AU L) = dmegr? ~ 4dmey 3

Du fait de la symétrie de révolution de la distribution autour de 1’axe (Oz), ce poten-
tiel ne dépend pas de I’angle ¢ .

Remarque

Pour une distribution de charges quelconque existant dans une zone réduite de ’es-
pace au voisinage d’un point P, étudions le potentiel créé en M (r = PM étant
grand devant les dimensions de la zone des charges) par cette distribution.

o Sila charge totale q de cette distribution est non nulle, le terme prépondérant

L 9. g ; 1
-+ Soit un potentiel en — -
dmey T P r
o Sila charge q estnulle, le terme précédent n’existe pas : il faut s’intéresser au
moment dipolaire p de cet ensemble de charges. Si p est non nul, le terme
p.r . .

L LT Soitun potentiel en €.
dmey 3 r2

o Sila charge q et le moment dipolaire p sont nuls, les termes précédents n’existent
pas : il faudrait alors pousser plus loin le développement du potentiel V(M).

du potentiel est

prépondérant du potentiel est

2.3. Champ du dipdle

2.3.1. Expression en coordonnées sphériques

— e &
Le développement de 1’expression E (M) = 4nqg (é - %) est délicat et nous
0\l 1y

déterminons le champ en calculant le gradient du potentiel qui vient d’€étre obtenu.
En coordonnées sphériques (cf. Annexe) :

Er_ _W 43'[38() rz
£ lav_ 1 p sin 6
0~ r ()H 47[80 r3

Le plan contenant OM et I’axe (Oz) est un plan de symétrie de la distribution, il est
naturel de trouver E.e , =0 (doc. 7).

L’expression du champ du dipole est :

1 2p cos O.e, +psin O.e g
dme r3

EM) =

84

P
Doc. 7. Orientation de E créé par un
dipéle p-



2.3.2. Expression intrinséque

Le moment dipolaire p peut s’icrire p =p(cos B.¢,—sin B.ep) .
Nous pouvons alors donner de E (M) une expression sous une forme intrinseque
(pour un dipdle en O, sans référence a un choix d’axes particulier).

Sous forme intrinseque, le champ du dipole est :
1 BF.g)e-p)

EM= 1y 13
. I | 3(?"-?)7-1?5?2)
Ou bien : E M) = A7z, pr;

Remarques
e Le champ d’un dipdle (en %) décroit plus vite que celui d’une charge ponc-
K
1
tuelle (en —)
r2
* La seule caractéristique du dipdle qui apparait dans les expressions du potentiel

V(M) et dans celle du champ E (M) est son moment dipolaire p.
Un dipole est entierement caractérisé par son moment dipolaire.

Application 1

5. Dipdle électrostatique

Autres caractéristiques du champ
d’un dipdle

En utilisant les notations du document 7, déterminer la E = % V3cos2 0+ 1

norme de E (M) et son inclinaison o sur le support du TEr

vecteur position OM . L’inclinaison ¢ (doc. 7) de E sur le support de OM est

. déterminée par :
En notant E la norme de E , il vient :
E
E=JE?+E}=—L _\/4cos26+sin? 0 tana=FH=itan9_
4dme 0 r 3 r 2
» Pour s’entrainer : ex. 5, 6 et 7.
2.4. Topographie de E etV
2.4.1. Equation et description qualitative
La distribution de charges d’un dip6le, dont le moment dipolaire p est sur I’axe V=-%
(Oz), admet cet axe comme axe de révolution. De ce fait, I’équation du potentiel /
V(M) ne dépend pas de la coordonnée ¢ et les surfaces équipotentielles sont de
révolution autour de (Oz). Une représentation graphique de leurs traces dans un i
plan de symétrie (¢ = cte) contenant I’axe (Oz) est dés lors suffisante (doc. 8). |
La ligne équipotentielle V = V|, a pour équation polaire : r2 = P cos® . f
4m €0V0 N /-': b i
Jit y " #

C’est I’équation d’une courbe fermée, symétrique par rapport a I’axe (Oz) et
passant par I’ origine.

Le signe de cos @ reste constant sur la ligne équipotentielle. Si V> 0, cette ligne
équipotentielle se situe dans le demi-plan z > 0, du c6té de la charge positive.

Doc. 8. Equipotentielles + Vi du dipdle.
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Le plan médiateur (xOvy) du doublet correspond a I’équipotentielle V = 0. Ce plan
médiateur est un plan d’antisymétrie de la distribution de charges, donc la ligne équi-
potentielle V = -V est symétrique de la ligne V = V| par rapport au plan médiateur.

Sur les lignes équipotentielles, la distance au point O est maximale sur I’axe (Oz).
A Dinverse, cette distance s annule lorsque @tend vers * . Les lignes équipoten-
tielles sont tangentes au plan médiateur (xOy) du dipdle.

Cette derniere constatation n’a cependant pas de réalité physique : au voisinage de
I’origine, I’approximation dipolaire ne s’applique plus, et I’équipotentielle V =V,
passe « quelque part » entre le point O et la charge +¢g (doc. 9).

2.4.2. Représentation

Sur le document 9 sont représentées les traces de quelques équipotentielles du sys-
teme de deux charges dans un plan contenant I’axe (Oz) . Le document 10
reprend ce tracé en utilisant la formule du potentiel dipolaire. Nous constatons que
les deux figures sont semblables, sauf au voisinage du dipdle ou 1’approximation
dipolaire n’est pas valable : la différence entre le doublet de charges et I’entité
idéale apparait nettement a courte distance.

SN
> \j |

axé\]duii‘(:)\%é \
4 )

Doc. 11. Visualisation du potentiel créé par deux charges — Doc. 12. Visualisation du potentiel du dipdle dans I’espace
—qet +q(ennoir V>0, enbleu V<O0). (ennoir V>0, en bleu V<0).
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2.4.3. Lignes de champ
2.4.3.1. Equation

Par définition, pour un déplacement élémentaire dr le long d’une ligne de champ,
nous aurons dr7~ A E =0 . Utilisant les coordonnées sphériques du champ et
I'expression dr =dre, +rdfeg + rsin 6dee, d’un déplacement élémentaire,

rsin 6de.Eg =0
nous obtenons : rsin 0de.E, =0
dr.Eg—rd6.E, =0.

Hors les lignes de champ situées sur 1’axe (Oz) (# =0 ou 6 =m), les deux
premieres équations imposent ¢ = cte. En effet, le systeme est de révolution autour
de I’axe (Oz) et les lignes de champ sont tracées dans les plans de symétrie passant
par cet axe.

La derniere équation s’explicite en sin f.dr =2r.cos 6.d6, ce qui donne, par inté-
gration, I’équation des lignes de champ :

r = cte sin? 6.

2.4.3.2. Description qualitative et représentation

Les lignes de champ sont donc des courbes planes tracées dans des plans conte-
nant I’axe de révolution (Oz). Elles sont, en outre, symétriques par rapport au plan
médiateur (xOy), qui est un plan d’antisymétrie qu’elles coupent orthogonalement.
Enfin, sur les lignes de champ, la distance au point O est maximale sur le plan
médiateur. Les lignes de champ sont tangentes a I’axe (Oz). Cette derniere carac-
téristique géométrique est sans réalité physique car, au voisinage du point O, I’ap-
proximation dipolaire n’est plus vérifiée.

Sur les documents 13 et 14, on trouve les cartes des lignes de champ et des lignes
équipotentielles respectivement pour un doublet de deux charges opposées et pour
un dipdle. On vérifie que les deux cartes sont équivalentes lorsque la distance d’ob-
servation est grande devant la taille du dipdle.

5. Dipdle électrostatique

Doc. 13. Equipotentielles et lignes de champ d’un doublet. Doc. 14. Equipotentielles et lignes de champ d’un dipéle.

» Pour s’entrainer : ex. 3.
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2.5. Généralisation

Le modele du dipole s’applique en fait a toute distribution de charges de charge
totale nulle.
Considérons un ensemble de N particules chargées, de position P; et de charges ¢;

N
(i € (1...N)) telles que 21 q;=0 (doc. 15).
i=
Notons ;= OP; le vecteur-position du point P;.

OM = ré, est le vecteur-position du point M et nous effectuons les calculs dans
I’approximation dipolaire : r>>a; pour tout i.

Le potentiel en un point M est :

i1 Fi)
4i 1 5 -~
Y igl Vi dme, 521 PM et ! rer—d

soit : P,-M2=r2—2re7.ﬁf+ai2 et =

I . a;
En se limitant au premier ordre en 71 :

1

r

n i1
- ~ a;|.e
:l[l.'._er.ai] et V= 1 igl ql+(i§1 di l) r .
T r Ame,| T 2

Si nous définissons le moment dipolaire de la distribution par :
— il D
alors, le potentiel en M se met sous la méme forme que celui d’un doublet de charges :

- —
r

p.e
ViM)=—— .
47 Eyr 2

Nous avons montré que le modele élémentaire du doublet peut en fai}tv s’appliquer a

toute distribution globalement neutre et de moment dipolaire p' = '21 q; OP, non
nul. =

Actions d’un champ électrostatique
sur un dipole

Nous supposons dans un premier temps que le dipdle est rigide, c’est-a-dire que
la distance AB reste fixe et les charges constantes.

Les actions mécaniques exercées sur le dipdle seront caractérisées par leur résul-
tante F et leur moment Iy calculé par rapport a un point O donné.

3.1. Champ uniforme

3.1.1. Force
Les forces exercées sur les charges +¢ et —¢ par le champ uniforme sont oppo-
sées. Par conséquent :

La résultante des forces qui s’exercent sur un dipéle placé dans un champ
uniforme est nulle :

F =0.

Le dipdle est donc soumis a un couple de forces.

La connaissance du moment en un point
et de la résultante des forces permet d’ex-
primer le moment en tout autre point,
car nous pouvons montrer que :

Ty =Ty + FNOO.




3.1.2. Moment

Calculons par exemple ce moment par rapport au point O , milieu des deux charges :

— —

F7)=(d§) A(‘IE))"'(‘%) A (=gEg) = qd NEy.

Pour un couple (force résultante nulle), le moment est indépendant du point ot il est
évalué. Il vaut donc en tout point : I' = p A Ej).

En observant le document 16, nous pouvons résumer 1’influence du champ appliqué
en disant que :

Dans un champ uniforme, le dipdle subit un couple de moment
I' =p NE quitend a I’aligner parallelement au champ appliqué dans
le méme sens que celui-ci.

3.2. Cas d’un champ non uniforme

Soit une zone de I’espace ol existe un champ électrique E(M) : plagons dans ce champ
un dipodle, et cherchons 1’action de ce champ.

Le dipole de moment dipolaire 7 = ¢ NP est constitué d’une charge — g en N ol existe
initialement un champ E(N), et une charge + ¢ en P ol existe le champ E(P). Appelons
O le centre du vecteur NP de composantes NP = (dx, &y, 82) (doc. 17). Les compo-
santes du moment dipolaire sont donc p : (¢0x, gdy, ¢dz).

3.2.1. Approximation du calcul

Dans le cas d’actions subies par le dip6le, I’approximation dipolaire consiste a sup-
poser la taille d = |NP|| du dipdle faible devant la distance L., longueur caracté-
ristique de variation du champ électrostatique appliqué ; on supposera, par exemple,
que le champ électrostatique varie de | E(M,)|| a||[E(M>)|| = 2| E(M))|| sur une dis-
tance de 1’ordre de L, (doc. 17).

Calculons ainsi un ordre de grandeur de :
[E®-Em] _ [oE]
[E@] |EO)

la composante suivant x de OF peut s’écrire :

0E 0E oE .
6Exz( Oxx)06x+( (.)vx)oéy+ aZX)OE)zzNP . grady (E,) .

EOx

La quantité || g?do (E)) || étant de I’ordre de grandeur de I

, hous pouvons écrire :

C

Dans I’approximation dipolaire, les variations relatives du champ extérieur

d
appliqué sur un dipole sont négligeables, de ’ordre de e rapport entre
(4
la taille du dipole et la distance caractéristique de variation du champ :

|[E@n-E©)| a

= ~—<<1 OM |~d.
[Fo] << e 1oV

Cherchons les effets de ce champ 1égérement non uniforme a I’échelle du dipdle.

5. Dipdle électrostatique

effet
d'alignement

Doc. 16. Dipéle dans un champ uni-
forme.

Doc. 17. Dans I’approximation dipo-
laire, d << L.
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3.2.2. Moment en O des forces s’exercant sur le dipole
Le moment I:(; en O des forces s’exercant sur le dipdle est égal a :
Iy =q(OP NE(P)-ONNE®V))
NP

avec OP = — ON = . on obtient en notant SE (P) = E(P) — E(O) et

SE (N)=E(N)-E(O):
I'o =q(OP A(E(0) +8E(P)) - ON A (E (0) + SE(V)))
=g NPAE(0) +q%A(est(P) +SE(N))
=pAE(0)+ ﬁ/\w

Les calculs précédents ont montré que les normes de SE (P) et SE (N) sont négli-
geables devant celle de E (0), donc nous écrivons :

Dans un champ non uniforme, le moment en O des forces s’exercant sur
un dipole est égal a : .

I'o=pNE ).
Dans un champ électrique, le dipole s’aligne sur la ligne de champ qui passe
par son centre.

3.2.3. Force

3.2.3.1. La force est-elle nulle ?
La force s’exercant sur le dipole est :

F =—qE(N) + qE(P) =q(E(P)—E(N)) .

Comme le champ est non uniforme, cette quantité est non nulle :

En présence d’un champ non uniforme, une force non nulle s’exerce sur le
dipole.

3.2.3.2. Mise en évidence de 'orientation de cette force

S’il n’y a pas de contraintes extérieures 1’empéchant d’évoluer, le dipdle s’aligne
sur la ligne de champ passant par son centre (doc. 18) (p et E sont alors paralleles
et de méme sens). Examinons les diverses situations ol nous avons fait apparaitre
les lignes de champs, avec les orientations du champ : le dip6le, orienté parallele-
menta E et dans le méme sens, est toujours attiré par les champs forts.

champs champs champs champs
« faibles » « orts » «forts » «faibles »

N EN) P E(P) E(P) P EN) N
FNy 4 +q Fpy X F(P) +q +q FNy X
= o —
Casa F(P)+ F(N) Casb F(P)+ F(N)

Doc. 18.
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champs champs
« forts » « faibles »

champs
champs
« faiblNS »

FV) N P F(P) EP) P EN) N
-4 EN) Y1 Ewp) x F(p) *4 -4 F(N) *
- —_—
Casc F(P)+ F(N) Casd F(P)+ F(N)
ro. 18. Sur ces divers documents a, b, ¢ et d, le dipdle, orienté parallélement a
E et dans le méme sens, est toujours attiré par les champs forts.
3.2.3.3. Cas général
La composante F, (par exemple) de la force F = ¢ (E (P)-E( (N)) s’exergant sur le
dipdle est donnée par :
0E, oE, oE,
F.=¢E,(P)-E,(N))=¢q (W Ox + iy dy + e 6z) .
Les composantes du moment dipolaire étant gox, g0y et gdz , cela donne :
oE, oE, IoE
Fe=pg gy tRg
Nous avons vu dans I’Application 2 du chapitre 3 que :
JE, OE, IE, OE,
dy — ox S T
on obtient donc :
0E, oE
— X Y 2z
Fe=px ax TP TR
relation qui s’écrit :
~ JE
FY = 1 7 .
. (5. 9E \ 5 4[5 9E | (5. OE | >
On a donc : F—( .ax)ex+(p. y)€y+( . 61) .
3.2.4. Interprétation
Retrouve-t-on I’orientation de la force précédente, c’est-a-dire que les dipdles, une
fois alignés sur le champ local, sont attirés par les champs forts ?
Examinons le document 19 sur lequel nous avons repris les quatre cas du document 18.
Les forces obéissent bien, en orientation, a I’expression précédente en considérant
les diverses orientations des champs et des gradients de champ.
champs « faibles » champs « forts » champs « forts » champs « faibles »
. E(N) E(P) E(P) E(N)
Neq) | P(+q) x P(+q) Nq) *
: p P - E
E—> %‘ ]_5 ! ox
Casa : F ox Casb
Doc. 19.
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champs * forts ~ champs * faibles champs " faibles ~ champs  forts ~
. EW) E(P) E(P) E(N) .
N—q) P(+9) x P(+¢) P N—q) X
E e r r :
ax 7 f OE L
Casc Casd ox ' F

Doc. 19. Sur ces divers documents a, b, ¢ et d, le dipdle orienté parallelement a
E et dans le méme sens est toujours attiré par les champs forts, conforme a I’ex-
. OE ) -

pression de la force en F= (p x| Er

Dans un champ électrique uniforme ou non, un dipole a tendance a s’ali-
gner sur la ligne de champ qui passe par son centre ; le dipole, orienté
parallelement au champ local et dans le méme sens, est alors attiré par les
champs forts.

Application 2

Une expérience a expliquer

Un morceau de matiere plastique, frotté sur un chiffon sec,
est approché d’un filet d’eau coulant d’un robinet. Le
résultat, assez spectaculaire, de cette expérience est
représenté sur le document 20).

Comment interpréter ce phénomene ?

La tige de plastique est électrisée, et ses charges créent
un champ électrostatique dont I’intensité croit lorsque
I’on s’approche du matériau chargé.

L’eau est constituée de molécules H,O polaires. Sous
I’effet du champ de la tige chargée, ces dipdles s’orien-
tent dans le sens du champ, et sont attirés alors vers les
zones de champ plus intense. Le filet d’eau dévie ainsi
nettement de la verticale pour se rapprocher de la tige
chargée. Doc. 20.

» Pour s’entrainer : ex. I.
3.3. Cas d’un dipdle non rigide

Si le dipdle n’est pas rigide, ses caractéristiques dépendent du champ appliqué.
Sous I’action du champ, les répartitions de charges (de 1’atome ou de la molécule
par exemple) sont modifiées. Le moment dipolaire dépend du champ électrosta-
tique: p = p(E).

Une fois le champ établi, les caractéristiques du dipdle sont bien déterminées et
son moment dipolaire connu. Les calculs précédents sont donc applicables en consi-
dérant pour p, la valeur du moment dipolaire en présence du champ p'(E) . Pour
le calcul de la force, nous pouvons raisonner avec ce moment dipolaire comme
sl était rigide.

92




Remarque : La matiere, sous I’action d’un champ appliqué, acquiert généralement
une polarisation (densité volumique de dipdles) de méme sens que le champ appli-
qué, de sorte que la matiére dévie vers les zones de champ fort. (Cf. I’Application 2
précédente.)

» Pour s’entrainer : ex. 4.

4 Energie potentielle d’interaction

4.1. Energie potentielle d’interaction entre un dipdle
rigide et un champ extérieur

Dans une distribution de charges ponctuelles, si les interactions entre les charges

sont neutralisées par des contraintes, I’énergie potentielle de la distribution dans

un champ électrostatique extérieur est la somme des énergies potentielles de cha-
cune des charges de la distribution.

Dans le cas d’un dip6le rigide, I’interaction électrostatique entre les deux charges
est neutralisée par la structure du dipdle qui maintient ces deux charges a une dis-
tance d constante.

L’énergie potentielle d’un tel dipole est donc due uniquement a I’interaction entre
les deux charges * ¢ et le champ extérieur.

Nous avons vu (chapitre 2) que 1’énergie potentielle d’une charge ¢ dans un champ
créant le potentiel Vest: &), =¢qV. Cela étant, I'énergie potentielle du dipdle rigide
est :

— — .
P (r 2 ) (r 2 )
Comme nous sommes fondés a écrire :

. d e TN |
V(r i§)=V(r)igrad (V(r )).7
il vient :

€, =qorad (V(F)).d=p.grad (V7)) =- p . E(¥).

L’énergie potentielle d’interaction entre un dipole rigide et le champ appli-
qué est :

€,=-5.E.

Notons que le travail fournit par un opérateur lors d’un déplacement élémentaire
du dipole rigide s’écrit :

Wep=dép=d(-p.E) =-p.dE —dp.E .
I1 serait possible, a partir de cette expression, de retrouver la force et le moment
s’exercant sur un dipdle.

Remarque : Dipdle rigide signifie ||E | = cte. Nous n’aurons p =cte que sile
dipdle subit une translation.

5. Dipdle électrostatique
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Application 3

94

Action exercée par un fil infini
chargé sur un dipdle

Soit un dipéle placé dans le champ électrostatique d’un
fil rectiligne infini portant la densité linéique A le dipéle
est en un point M, a une distance r du fil, orienté radi-
calement dans un plan perpendiculaire au fil.

1) Déterminer la résultante F et le moment IW; en M
des actions exercées par le fil sur le dipdle.

2) Calculer I’énergie potentielle €, du dipdle.

3) Quelle relation lie F et g,.

1) Rappelons que le champ créé par le fil rectiligne infini
est radial, orienté suivant e, , et varie en v il est donné
par I’expression suivante :

A

S 23'[80

“\:ml

Le moment résultant se calcule immédiatement : comme
le dipdle est aligné parallelement au champ, le moment
Iy des forces s’exergant sur le dipOle est nul.

Ay

P(+q) p
N(=¢q)
M
/
Cr
Z X
‘\ fil infini parallele a Oz portant
une densité linéique de charge 4

Doc. 21.

Pour le calcul de la résultante F des forces appliquées,
nous pouvons utiliser la méthode vue au § 3.2.3. : soit
dla distance entre les deux charges — g et + ¢ de ce dipdle
de moment p = gd ; la résultante des forces s’exergant
sur les deux charges du dipdle est :

- A .
P Lo ol

—,_d )
Avec ON=r 2,OP r+2,

I’approximation dipolaire, on obtient :

et en se placant dans

-  Agq d\-1 A1 = AMd
F_ano((r+§) _(r_f) L"zzngorze
_ oy
T 2meg 2

Cette force orientée suivant — e, attire le dipole vers
I’axe (Oz) ot existent les champs intenses.

2) L’énergie potentielle du dipole est donnée par I’ex-
pression &, = —p'. E (M), ce qui donne :
T
PT 2meyr

3) Lors d’une translation élémentaire dM = dre,” du
dipdle sur la ligne de champ, la variation d’énergie poten-
tielle d€), est opg)sée au travail de la force F, ce qui
donne : d€), =~ F.dre,, soit :
d(— ald ):—(— Ap )dr,
2 &t 2x £ r2

ce qui est bien vérifié.

@ LE MOMENT DIPOLAIRE

s e € Q F R S e

Un objet non chargé, mais polarisé, crée un potentiel et un champ analogues (en premlere approximation) a
ceux d’un doublet de charges de moment dipolaire p nonnul (g >0): p=qd et d =A A AT .

@® POTENTIEL ET CHAMP DU DIPOLE

* En utilisant I’expression du moment dipolaire, le potentiel électrostatique créé par un dipdle placé au

d

point O, a I’ordre le plus bas en puissances de <, est :

] —_ =

_ p.r
_47[80 r3

pcosf

e




5. Dipdle électrostatique

CECCCEE- I AR

1 2pcosBe, +psinBeg

« Lexpression du champ du dipdle est : E (M) = ime S
0 r

* Sous forme intrinseque, le champ du dipdle est :

L (35.5)5-7 B}
41 80 ( r3 ou encore : E(M):

1 3(p.OM).OM - poM?

E@)=
4w, oM?

@ INTERACTION D’UN DIPOLE AVEC UN CHAMP APPLIQUE

« La résultante des forces qui s’exercent sur un dipdle placé dans un champ uniforme est nulle : F=0.
* Le moment des forces s’exergant sur un dipdle soumis en M a un champ appliqué E (M) pratiquement
uniforme est : I'pp=p1 A E ).

* Dans un champ non uniforme, le dipdle subit principalement un moment qui tend a 1’aligner parallele-
ment au champ appliqué, dans le méme sens que celui-ci. Une fois aligné, le dipdle subit encore une force
qui tend a le déplacer vers les zones de champ intense.

» L’énergie potentielle d’interaction entre un dipole rigide et le champ appliqué est : &p = —EE .

(ontrole m;aZAe

v’ Définir le moment dipolaire p d’une distribution de charges globalement neutre et en donner 1’unité.
v/ Définir 1’approximation dipolaire.

v’ Calculer le potentiel V(M) créé * par un dipole se placant dans 1’approximation dipolaire.

v Etablir I’expression du champ E (M) créé par un dipole, dans I’approximation dipolaire.

v/ Démontrer que dans un champ uniforme EO, un dipdle (rigide ou pas) est soumis a un couple I" dont on déter-
minera le moment.

v Etablir I’expression de la force F appliquée a un dipole soumis 2 un champ légérement non uniforme.
v Etablir I’expression de 1’énergie potentielle €p d’un dipdle rigide placé dans un champ E.

Du tac au tac (Vrai ou faux)

l. Toute distribution de charges dont la charge

N

w

totale est nulle se comporte comme un dipdle.
Q Vrai O Faux
. A grande distance, le potentiel d’une distribu-
. . . 1
tion dipolaire est en 2 parce que la charge totale
de la distribution est nulle.

1 Vrai 4 Faux

. Dans un champ uniforme, le moment résultant
I des forces appliquées a un dipdle est indé-

pendant du point ou on I’évalue, parce que la
résultante F des forces appliquées est nulle.
Q Vrai O Faux

. Dans un champ légérement non uniforme, le

dipdle n’est encore soumis qu’a un couple.
O Vrai O Faux

. Un dipole est rlglde lorsque son moment dipo-

laire est constant : p = cte.
Q Vrai U Faux

P Solution, page 97.
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Exercices

;I,,,.V Force subie par le dipdle
dans un cas unidimensionnel

Un dipdle, placé en un point de coordonnées cartésiennes
(x,y, 2), est soumis au champ E =E(x) ¢, . Calculer a
I’aide du modele du doublet puis la force subie par le dipdle
lorsque :

1) p estparallelea e, etde méme sens que e, ;

2) p estperpendiculairea e .

% L’atome de Thomson, modéle
- de polarisation linéaire

Dans ce modele, un atome d’hydrogene est représenté par un
noyau de charge + e occupant une boule de rayon R a I’in-
térieur de laquelle la charge e est uniformément répartie.
L’¢électron, de charge — e, est susceptible d’évoluer a I’inté-
rieur de la boule chargée positivement.

1) Quelle est la force subie par I’électron évoluant a I’ intérieur
de la sphere de rayon R ? Quelle est sa position d’équilibre ?
2) Quelle est la nature de la trajectoire de 1’ électron, supposée
interne a la boule ? Quelle est la valeur du moment dipolaire
moyen de cet atome ?

3) Un champ E est appliqué a cet atome, le noyau étant sup-
posé immobile. Si I’électron reste encore a I’intérieur de la
sphere de rayon R, quelles sont les modifications apportées
aux résultats précédents par I’existence du champ appliqué ?
Montrer en particulier que le moment dipolaire moyen est de
la forme < p” > =ae&(Ey , ou le facteur « est appelé
polarisabilité de 1’atome.

Quelle est la dimension de ¢ ? Son ordre de grandeur ?

4) Pour quelle valeur du champ appliqué aura-t-on ’ionisa-
tion de cet atome ?

é Champ et potentiel créés par un sphére

Une sphere de centre O et de
rayon R porte une charge sur-
facique o =aycos 0.

o =0(cos 0

Déterminer le champ et le
potentiel créé par cette
distribution a I’intérieur et a
I’extérieur de la sphere (on
prendra V=0 en O).

Commenter le comportement
duchampen r =R.

Indication : On utilisera I’équivalence entre cette distribution
et la superposition de deux distributions de charges corres-
pondant a deux boules chargées uniformément —p et +p,
de rayon R, de centres Oy et O sur I’axe (Oz) et d’abscisses
—a et ta respectivement, a la limite a tend vers 0 avec
pa =cte = o . Cette équivalence a été vue exercice 9
chapitre 4.

é:«-** Forces de Van der Waals

Une molécule non polarisable de moment électrique py = pg ey
est placée en O. En un point M de I’axe (Ox) se trouve une
molécule polarisable de polarisabilité o et de moment élec-
trique permanent nul. Dans le champ E (M) créé par la molé-
cule placée en O, la molécule polarisable acquiert un moment
dipolaire induit p; = ar E (M).

Calculer la force F qui s’exerce sur la molécule polarisable.

é; Champ et potentiel d’un quadrupodle

z 2N

Calculer le premier terme non nul du potentiel créé a grande
distance par la distribution représentée sur le schéma.

M

éé,,,Champ de quatre charges

Quatre charges sont disposées dans le plan (xOy) :
gen(a,0)eten(—a,0); —gen(0,a)eten (0, — a).
Calculer le champ créé par la distribution de charges pour
r >> a , puis pour r << a , dans le plan (xOy) .
(On se limitera aux premiers termes non nuls des dévelop-

pements limités.)

i

7. Interaction d’une spire et d’un dipéle
Le cerceau, de rayon R, porte la charge linéique A uniforme.

1) Calculer le champ électrostatique créé par le cerceau sur
son axe, ainsi qu’au voisinage de celui-ci.
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spire chargée

P/(
M

2) Quelles sont les actions mécaniques exercées par la spire
sur le dipole placé en M ?
On proposera trois méthodes pour effectuer ce calcul.

3) On prend désormais o =0 . Le dip6le peut coulisser sans
frottement sur 1’axe horizontal. Déterminer la ou les positions
d’équilibre. Discuter leur stabilité et calculer éventuellement

la période des petites oscillations du dipole de masse m le
long de I’axe.

8A, Calcul de la force instantanée
d’interaction entre deux dipoles

Soit un dipdle p;~ au point O et un dipdle p, au point
M (OM =r).Le dipole p;~ crée le champ €lectrostatique
E, ,etledipdle p, le champ électrostatique E, .

1) Quelle est I’énergie potentielle d’interaction existant entre
ces deux dipdles ?

2) Quelle est la force subie par p, delapartde p; ?

Corrigés

Solution du tac au tac, p. 95.

I. Vraisi p#0 4, Faux
2. Vrai 5. Faux
3. Vrai

- 1) Utilisant le modele du doublet, nous avons :
dE@) -
d ’C

F =—gE (x—%)eﬁ-qE (x+d) =qd

Expression de la forme (ﬁ. %) e, trouvée dans le cours.

Lorsque le dipole est dans le méme sens que le champ, nous pouvons constater que
le dipodle est attiré dans le sens ot 1a norme du champ augmente, donc il est attiré par
les champs forts.

2) Lorsque le dipdle est perpendiculaire au champ, par exemple p~ =p.ey, le cal-
cul précédent donne immédiatement F =0.

% 1) La charge e, répartie uniformément a I'intérieur de la sphere, correspond a

la charge volumique p= e

4nRY

Le champ en un point M (OM =7 intérieur a la sphére vaut
e Y

— ar

45 & R 3

L’€lectron est donc soumis a la force centrale de rappel linéaire vers le point O :

LA
E=34

: 2
= e
Se=——wm=f
d 4n sOR3
Elle est nulle en O, position d’équilibre stable de Iélectron.

2) L'équation du mouvement de 1'électron a I'intérieur de la sphere est :
2

= =0,
dmeyR’
Pour des conditions initiales r( et #7 données, I'équation du mouvement est

= P 70 . \ /’ 62
r(f)=rgcos wt + 5 sinwt, ol w= I r—t
\ dueymR

mf+

- La trajectoire est une

ellipse de centre O .
Le moment dipolaire instantané de I"atome est p” = —er . Sa valeur moyenne est nulle.

3) Le champ E] exerce la force supplémentaire — eEo sur I'électron. S'il reste a

I'intérieur de la sphere, 1'électron aura la méme trajectmre décalée d’un vecteur
-4me, &

constant : I'ellipse sera centrée en < r~ > = E o - La polarisabilité de

I'atome s’en déduit o =4aR>, homogene A un volume, et en ordre de grandeur de

R avec R =0,1 nm.
2
4) La force de rappel est maximale pour r =R, de norme fyay = e_2 .
dmeR
1

)
12

(A Iextérieur de la sphére, elle décroit comme a partir de cette valeur.) Elle ne

peut plus compenser la force exercée par le champ E, o lorsque la norme de celui-ci

dépasse E(pax= -Il'y a alors ionisation de I'atome.

_ &
47 ek
Pour R = 0,1 nm, ce champ est de I'ordre de 101 V.m~" (considérable, le champ
disruptif de I"air sec vaut environ 3. 106 V.m~"). Les champs que nous appliquons
aux atomes sont généralement beaucoup plus faibles, et n’ont alors que des effets de
faible perturbation sur I’ atome, donc linéaires en premiere approximation. Ce modele
d’atome, bien qu’assez étrange, a I’agréable propriété de rendre compte d’une pola-
risation linéaire (conforme a ’expérience) et donne un ordre de grandeur de la pola-
risabilité en bon accord avec les valeurs usuelles pour la polarisation électronique.
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Corrigeés

?w Aintérieur de la sphere, les deux distributions de charges créent les champs :

P — P
E (M) :_3780 0M et Eo(M) :+3780 0)M

. ——_ P _
soit au total E(M) = 35, 0,0, = 36 e,.
A la limite quand a tend vers 0, nous obtenons :

o 0y . TR \
I == 7380 e, uniforme a I'intérieur de la sphere.
0

. _ (%) _|%
Le potentiel s’en déduit V (M) = 370 = 3g rcos 6.

A Textérieur de la sphére, nous savons que les deux boules chargées créent le méme
. 4 g q
champ que si toutes leurs charges = ¢ =+ 31 R3 p étaient concentrées en O

et 0. A lalimite quand a tend vers 0, le champ vu 4 une distance supérieure & R du

point O correspond au champ d’un dipdle placé en O et de moment dipolaire :
p =q0,0, = % TR3pae; = % TR30qe;.
Le calcul du potentiel puis celui du champ a été effectué dans le cours et nous donne :

p :2R300M

Rl I A SR
y=2EE o Fo| 0]
b r R0y sin g
Ey=30 3
380 I

Nous vérifions que le potentiel est continu sur la sphere, que la composante tangentielle

du champ est continue (Eg) , et que la discontinuité de la composante normale (E,,)

est bien égale a s% @ =@

Sur les simulations suivantes, nous visualisons les équipotentielles et les lignes de

champ ainsi que I'évolution du potentiel dans un plan contenant I'axe (Oz).

EEE
AyL)z \:.

Lignes de champ et équipotentielles d’une sphére chargée :
a=apcos 0, avec ay>0.

98

Evolution du potentiel créé par une sphére chargée o = ay cos 6 (ap > 0) . Nous
visualisons la surface plane inclinée correspondant a la zone de champ uniforme.

. 2
é;,. La molécule placée en O crée le champ : E (M) = .

T e =E()ey.

Ce champ induit, dans la molécule polarisable, un moment électrique en déplacant le

barycentre des charges négatives (- g) en M_(x = %) . Le moment induit résultant est
alors: pr=aEM)=gM.M, .

Dans I'hypothése a << x, nous sommes fondés a écrire : E (x * %) =E(x)=* % %

ce qui donne pour I’expression de la force exercée sur la molécule polarisable :

R

Comme ¢= % = aTE , il vient apres simplification :

dE 30 P
FzapSEg=- 20 D7
Pk dnlel ot

C’est une force attractive en % . De telles forces s’exercent entre molécules et sont
7

appelées forces de Van der Waals.

§W" La charge totale est nulle et le moment dipolaire p” est aussi nul. Il faudra
calculer le développement limité du potentiel jusqu’a I’ ordre trois en % (au moins !).

1 1
B\F5 2\~
V()= 1 (2—(1+dc056+d) 2—(1—dc059+d—) 2

Amegr r 472 r 4r?

_q d Cd*3dE s
= 4n€0r(2—(1—2r0059 8r2+8r2 cos“0+ ...

2 ap
—(l 4 o5 G—d—z +3—d,00520+ ))
2r 8 8
_ 4l 1300
duggd 4

Le premier terme non nul est de type quadrupolaire. Les simulations suivantes
présentent allure des lignes de champ et des équipotentielles, ainsi que I'allure du
potentiel. Nous visualisons bien les équipotentielles :

n 2n

V=0, pour == 3 et =% 3



5. Dipdle électrostatique

Evolution du potentiel créé par le systeme de charges (—,2¢, —q).

1
}3

Ce potentiel tend tres vite vers zéro <terme en

éﬁ Le potentiel créé en un point M de coordonnées polaires (7; 6) dans le plan

(xOy) est, a une constante pres :

I I
_ g |(P-2arcos 0+a%) 2+ +2arcos f+ad) 2

411750

] , 1
—(2=2arsin O+a® " 2-(r2+2arsin @ +a2) 2

A une distance r de I'origine grande devant a, nous devons mener le développement
du potentiel au moins jusqu’a I'ordre deux, car la charge et le moment dipolaire de
cette distribution sont nuls :

(Hacgs 6 a2 3a coszﬁ
2r?
N (1 acos 9 a2 3a co%2¢9)
ve 4 2r? _ 3ga*(2c0s*6 - 1)
4neg (1 Lasind a2 3a 91n2€) dmeyr
21
(1 asin 49 a2 3a 51n2€)

et le champ électrostatique vaut :

E—Msz 0-1)e, +2sin26.¢;
—4n€4[(cos e, +2sin20.e4].

_( f}’yﬁij t)

Lignes de champ et équipotentielles créés par les quatre charges.

A distance r faible devant , le développement du potentiel est identique au précé-

dent, en intervertissant a et r,
 3gr2cos?0-1)

dgya’

3qr
4?‘550“3

et le champ est : E = [-2(2cos20—1) e, +2sin2.e7].

Evolution du potentiel créé par quatre charges. Le potentiel tend vite vers zéro

(termes en % ) .

7
Les simulations précédentes présentent I’allure des lignes de champ et des équipo-
tentielles, ainsi que I'allure du potentiel. Nous visualisons bien les équipotentielles

V=0 pour == ‘— et 0= +Z{°

}w: 1) Sur Iaxe, le champ du cerceau est porté par I"axe (Oz) par raison de symé-

trie. En n’oubliant pas de projeter les champs élémentaires sur ’axe (Oz), on trouve
sans difficulté :
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Corriges

F=M_ o
T 28 (2 g

dont I'allure des variations apparat sur le schéma ci-apres.

E xe(2)
L 3
J2 ]
1 1 s
3 2 R
Variations du champ sur l'axe.
Le champ passe par deux extrema pour :
EA L , 0l 7dEaX°(Z) =0.
R ¥2 dz

Au voisinage de |’axe, nous aurons a 'ordre un en r (cf. Application 1, chapitre 4) :

E(r,z>=Eaxe<z>e:—§(%
7 2_ 72
SRz g 4 REE G
250

2+rp R

2) En premiere approximation, le dipdle subit un couple de moment :
T =F AE =-pEye (2) sin ey

qui tend a I'aligner sur I"axe (02).

Tl est toujours possible de revenir au modgle du doublet (7 = gd ) pour calculer la force
subie par le dipdle :

=_ dcosa)» dsina By
R

deosa)» dsin o [(Eaxe) -
- 253t e |

ce qui conduit au résultat :

F i dE,
F:p(cosae”:_%gr)%@.

3) Pour un dipdle p=pe; , laforce subie est (dans le cas ob = 0) :
- B, @)
Fopael¥s

= dz 75

# s’annule pour deux valeurs de z :
K

R R ons déal
7=+ —— etz=--— :ilexiste donc deux positions d’équilibre.

V2 V2

Exprimons I'énergie potentielle, €p du dipole : €, =~ E == Eye () : 1a posi-
tion d’équilibre stable correspond a un minimum d’énergie potentielle, donc a un
maximum de Eyy.(z), c’est-d-dire a 7=+ R ;7=- iﬁ est une position d’équilibre

instable. 2 V2
R

Etudions le mouvement du dipdle au voisinage de z = % et posons z = 7 +e,.
¥ ¥

Pour un dipdle de masse m coulissant sur 1’axe (Oz) soumis uniquement a la force

précédente selon (Oz), I'équation du mouvement linéarisée au voisinage de la posi-

tion d’équilibre est :

8pA

d2€~
m == &5 o
d* ] 93 gRd ¢

C’est une équation d’oscillateur harmonique, cette position d’équilibre est stable.

L"autre position (z =- %) est en revanche instable.

I

§ 1) L'énergie potentielle d’interaction entre les deux dipdles est donnée par la

formule : - .
ép=-piEy ==py .Ey .

Le champ cré€ par le diple py enr est:

3 .f‘)*—rzﬁf)

P

-1
45[80

Ey (r)
L'énergie potentielle d'interaction est donc égale a :

—3071'?)(175-?)+r2@71'175))
< A
;

Remarquons que cette relation est bien symétrique en p| < p,.

2) Calculons la force exercée par le dipble py surle diple p; . Sachant que :
gl (1)=-"5 wd (717

la force exercée par le premier dipdle sur le second s’en déduit :

L (100 7 B

43'[80 \ P

F =—grad

| (3(1?)@-?)+3@>(p7-?>—2f<ﬁ.172'))
)'5

+ % (- 3(77) (ﬁ-?)+r2<ﬁ.ﬁ>)

3 Py @)Dy (py )+ Py pr= Sy &) (Pr -E)
43'[80 4

La force instantanée est donc en i4 .
7



Distributions
de courants

Jnlro duehis)

En électrostatique, les charges sont immobiles.
Leur mise en mouvement donne

naissance a des courants électriques,

a lorigine de I’apparition du champ magnétique.

Nous décrirons ici les distributions de courants,
leurs modélisations et leurs symétries remarquables
comme nous ’avons fait au chapitre 1

pour les distributions de charges.

OBIECTIFS

B Décrire les distributions de courants.
B Reconnaitre leurs propriétés de symétrie.

PREREQUIS

M Distributions de charges.
B Symétries remarquables d’un champ de vec-
teurs (champ électrostatique).
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I Mouvements de charges

I.1. Courant électrique

Etant donné un référentiel 2, on appelle courant électrigue tout mouvement d’ensemble
(mouvement ordonné) de particules chargées dans ce référentiel.

1.2. Intensité électrique

Considérons une surface S liée au référentiel %2, munie en tout point M d’une nor-
male orientée par un vecteur unitaire 7 (doc. 1). Notons 80y, la charge mobile tra-
versant cette surface entre les instants ¢ et ¢ +3¢, comptée positivement dans le
sens choisi par I’ orientation de S.

Remarque

L’intervalle de temps élémentaire dt est infinitésimal si % << 1, T étant une

durée caractéristique du phénomene étudié (par exemple la période pour un courant
sinusoidal).

L’intensité I (S, #) du courant électrique a travers une surface S est liée a
la charge 6 Q , qui traverse S entre les instants ¢ et ¢+ 67 par la relation
00 m=I(S, 1) ot.

L’intensité, grandeur électrique, dépend de I’orientation de S .

Elle s’exprime en ampere (symbole : A), unité de base du Systeme
International d’unités.

1.3. Conservation de la charge électrique

1.3.1. Cas d’un systéme fermé

Un systeme fermé est un systeme qui n’échange pas de matiere avec le milieu qui
I’entoure.

Pour un tel systeme, 1’expérience montre que la charge reste constante.

1.3.2. Cas d’un systéme ouvert

Un systeme ouvert peut échanger de la matiere avec le milieu qui I’entoure. Il est
donc susceptible de recevoir ou de céder des charges électriques.

Considérons un tel systéme occupant un volume V. La conservation de la charge
électrique impose que I’évolution de la charge contenue dans V soit due uniquement
aux transferts de charges entre le systeéme et I’extérieur, donc qu’elle soit liée aux
courants électriques entrant ou sortant & travers la surface fermée S délimitant son
volume V.

Pour le cas représenté sur le document 2, en notant Qy la charge contenue dans le
volume V, la conservation de la charge se traduit par :

d3Qy= + 1, +13 —14)0t .

|.4. Divers courants électriques

Le classement suivant est traditionnel.

102
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Doc. 1. Surface S orientée par un vec-
teur unitaire n .

) f

I
I3

Doc. 2. L’évolution 8Qy de la charge
contenue dans le volume V pendant le
temps Ot est égale a :

SQy =0+ 1y +15—14)0t.



1.4.1. Les courants de conduction

Ils sont associés au déplacement d’ensemble d’électrons dans les métaux, d’ions
dans les solutions d’électrolytes, d’électrons ou de lacunes électroniques (« trous »)
dans les semi-conducteurs.

Pour un conducteur métallique fixe dans le référentiel d’étude %, ce sont les élec-
trons dits de conduction qui autorisent 1’existence d’un courant électrique.

Leur densité particulaire n, (nombre par unité de volume) est élevée, de I’ordre
de 102 m™3 . Un volume mésoscopique dr, bien que macroscopiquement trés
petit, contient un nombre n. d7 important d’électrons de conduction.

Les électrons de conduction, indicés k, sont animés de vitesses Vj. . Pour le volume

d7, nous définirons la vitesse d’ensemble des porteurs par v = p 1dr Z Vi .
€ k

Cette vitesse est une grandeur nivelée, ou valeur moyenne spatiale.

Les vitesses V. , de I’ordre de 109m.s~! | résultent d’une agitation désordonnée
a laquelle se superpose un mouvement d’ensemble a vitesse v (dli par exemple a
I’application d’un champ électrique au conducteur). Leur valeur est sans commune
mesure avec I’ordre de grandeur de la vitesse d’ensemble des électrons de conduction
(cf application 1). Leur partie aléatoire V;, —v évolue trés rapidement aux échelles
de temps T caractérisant les expériences usuelles :

Le courant électrique de conduction résulte d’un mouvement d’ensemble
(ou de dérive) des porteurs de charges dans un support matériel fixe.

Application 1

Vitesse d’ensemble des porteurs
de charges dans un conducteur

Un fil de cuivre cylindrique et plein, de rayon r=1mm,
est parcouru par un courant statique (indépendant du
temps) d’intensité 1 =35 A .

1l y a en moyenne un électron de conduction par atome |v|=
de cuivre.

Evaluer la vitesse d’ensemble, supposée uniforme, des

charges mobiles dans ce métal. B .
. électron mobile.

Données :

Masse volumique u =8,9.103kg.m™3.

Masse molaire M = 63,6 g .

La densité particulaire des électrons de conduction

6. Distributions de courants

Nous en déduisons 8Q, = — nee nrZvdt.

2

Le courant électrique est donc [ =— neemr<v .

La vitesse d’ensemble des porteurs de charges mobiles est
de sens opposé a celle du courant et sa norme est :
5 =12.107%m.s7 !,

neemr

Cette vitesse d’ensemble, de ’ordre de 0,1 mm.s™ !, est

tres nettement inférieure a la vitesse V| de chaque

La vitesse calculée correspond a la valeur moyenne spa-
tiale des vitesses Vj .

est ng =Ny % (Np = 6,02.1023 mol~ ! , nombre E
d’Avogadro). A.N. : n, = 8,4.108m~ 3,

Sy

La charge 8Q,, traversant une section § =S e, dufil z’ |
pendant 'intervalle de temps 8¢ (doc. 3) est contenue dans %

un trongon cylindrique de section et de longueur 293¢,
de volume dr =S 08t =mnr2vd¢. Doc. 3.
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1.4.2. Les courants de convection

De tels courants sont obtenus par déplacement dans un référentiel donné d’un
support matériel portant des charges. C’est le cas d’un disque chargé qui tourne
autour de son axe, mouvement donnant naissance a des courants annulaires (ou
orthoradiaux).

1.4.3. Les courants particulaires

A un faisceau de particules chargées (électrons ou ions dans les tubes & vide) est
associé un courant électrique dit particulaire.

2 Distributions de courants

2.1. Courants filiformes

2.1.1. Conducteur filiforme

Un fil conducteur de faible section a 1’échelle macroscopique peut étre assimilé a
une courbe 6 (sans épaisseur). Dans cette modélisation, la seule information a
laquelle nous avons acces est la quantité de charge passant au point M par unité
de temps, c’est-a-dire a 'intensité i (M, t) (doc. 4).

Lintensité i(M, t) du courant dépend en général a la fois du point M et du temps.
La fleche tracée sur le schéma indique 1’orientation du vecteur unitaire normal a
une section du fil. Ainsi, i (M, t) >0 correspond a un écoulement de charges posi-
tives dans le sens de la fleche ou a un écoulement de charges négatives dans le sens
opposé.

2.1.2. Cas du régime statique ou indépendant du temps
Considérons le fil représenté sur le document 4. Pendant la durée élémentaire d¢

la variation élémentaire de la charge électrique g1, comprise entre M| et M, est:
dq12 = dGentrant en M~ dGsortant en M, = i(My)dt —i(Mp)dt soit :

dqu . s
S =iy - i)

En régime permanent, toutes les grandeurs sont constantes, et en particulier gy, ,
donc :

% =0 soit: i(M))=i(My).

En régime permanent, I’intensité d’un courant filiforme a la méme valeur
en tout point d’un fil sans dérivation.

Imaginons maintenant un fil AB non fermé. La charge ne pouvant s’accumuler ni
en A nien B, nous pouvons affirmer: i(A) =i(B)=0.

Comme, en régime permanent, le courant est uniforme dans le fil, ce courant est
nul partout. Nous pouvons donc affirmer que :

En régime permanent, un courant filiforme ne peut exister que sur un cir-
cuit fermé.

Doc. 4. Courant filiforme.



Le modeéle de courant filiforme ne donne aucun renseignement sur la fagon dont
les mouvements de charges se répartissent a l'intérieur du fil. Il peut étre néces-
saire de disposer d’une description plus fine : ¢’est le modéle du courant volu-
mique.

Par ailleurs, il arrive que les fils d’un circuit soient jointifs et se répartissent sur
une surface (fils d’'un bobinage de solénoide, par exemple). Les effets de ces cou-
rants seront plus faciles a étudier en modélisant le circuit par une nappe de cou-
rants surfaciques.

Les deux paragraphes qui suivent introduisent des notions qui, bien que n’étant
pas au programme de premicre année, éclairent la notion de courant électrique.

2.2. Courants volumiques

2.2.1. Vecteur densité volumique de courants

Considérons un ensemble de particules de charges ¢ , de densité particulaire n et
ayant un mouvement d’ensemble 2 vitesse v .

Nous appellerons densité volumique de charges mobiles la quantité :

Pm =14 .

Remarque

pm =nq désigne la densité volumique de charges mobiles (en C.m™3), & ne pas
confondre avec p , densité totale de charges, qui prend également en compte les
charges qualifiées de fixes (par exemple les ions formant le réseau cristallin dans
un conducteur métallique).

Le vecteur densité volumique de courant associé a un mouvement d’en-
semble a vitesse v est:

J =nqv =pnpv.
Ce vecteur, dont la valeur s’exprime en A.m™2, est par construction une
grandeur nivelée.

Pour un tel mouvement, la charge mobile 8 Q,, traversant entre les instants ¢ et
¢ + 3¢ la surface élémentaire dS, représentée sur le document 5, est contenue a la
date ¢ dans le cylindre oblique de hauteur »8¢ et de volume d7=58¢.dS . Par
conséquent :

80 m =ngdr=nqgvdt.ds .
Lintensité dI traversant I’élément de surface dS est :

dI =ngv.dS =j.dS .

L’intensité du courant électrique traversant une surface S est égale au flux
du vecteur densité volumique de courants j (r, f) a travers cette surface :

I1(S, 1) =”Sf(rj H.dS .

Lorsqu’il existe différents types de porteurs de charges (électrolyte par exemple),
les contributions au courant électrique de chaque type, indicé ¢, s’ajoutent. Le
vecteur densité résultant est alors :

7 :ZT(X = z Naqe Vo= z Pmoﬁa-
o o o

6. Distributions de courants

Vot

Doc. 5. Les particules qui traversent
la surface dS pendant le temps dt
sont situées dans un cylindre de base
dS et de génératrice VOt .
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2.2.2. Lignes et tubes de courant

Une ligne de courant est une ligne en tout point de laquelle le vecteur den-
sité volumique de courant est tangent.

Un tube de courant est un ensemble de lignes de courant s’appuyant sur un
contour C (doc. 6).

2.1.3. Flux conservatif de j en régime permanent statique

En régime permanent, la charge contenue a I’intérieur d’une surface fermée S (fixe)
n’évolue pas. L’intensité traversant cette surface est donc nulle, ¢’est-a-dire que le
flux sortant de j a travers S est nul.

Appliquons ce résultat a une surface fermée obtenue par la réunion de deux sections
S| et S, d’un méme tube de courant et de la surface 3 du tube joignant ces
surfaces (doc. 7).

Comme il n’y a aucun mouvement de charges 2 travers la surface 3 (j .77 =0),

I’intensité traversant la surface S | (11 = J' f fd§ 1) est égale a celle traversant
Sz (12 ZJff.dgz) .

En régime permanent statique (indépendant du temps), le vecteur j a un
flux conservatif : le courant électrique est le méme a travers toutes les sec-
tions d’un méme tube de courant.

2.3. Courants surfaciques

2.3.1. Vecteur densité surfacique de courants

Lorsque la distribution de courants se trouve confinée dans une écorce d’épaisseur
h faible a I’échelle macroscopique, nous pouvons assimiler celle-ci a une distribu-
tion surfacique de courants.

Considérons une section élémentaire dS =hd¥€ (doc. 8) de I’écorce, orientée selon
le vecteur unitaire ' , dS =dS.u . Pour & faible, le vecteur j est dans le plan
tangent a la nappe et le courant traversant dS est d/ =j.dS =j hu d¢€.

Pour une épaisseur £ tres faible, nous envisagerons la représentation limite « 4 tend
vers zéro » a courant d/ constant pour un élément de longueur d/ donné. Le
produit Th , maintenu constant lors de cette opération, sera noté 75 , vecteur
densité surfacique de courants. Sa norme se mesure en A.m™ 1.

Lorsque les courants circulent sur des nappes surfaciques, le vecteur den-
sité surfacique de courants j g associé est défini par :

dI =jg.udl,
d I étant ’intensité traversant I’élément de longueur d! tracé sur la surface.

Le vecteur jg, dont la valeur s’exprime en A.m™., est par construction
une grandeur nivelée.

2.3.2. Densité surfacique de courant associée a une distribution
de courants filiformes en surface

Considérons le circuit filiforme hélicoidal d’un bobinage « simple couche » d’un
solénoide parcouru par un courant I (doc. 9).

lignes de courant

contour C

e

tube de courant

Doc. 6. Lignes et tube de courant s’ap-
puyant sur un contour C.

tube de courant

1 section

S
Doc. 7. Tube de courant.

Doc. 8a. Ecorce orientée pour h faible.

dl
Doc. 8b. A tres faible.



Si les fils sont tres rapprochés les uns des autres (ou jointifs) il est avantageux de
modéliser ce circuit hélicoidal par un empilement de courants circulaires placés les
uns a coté des autres.

Notons n = — le nombre de circuits circulaires par unité de longueur le long de

I’axe (0z). Nous pouvons encore pousser la modélisation en effectuant une opé-
ration de nivelage, substituant a I’empilement des courants circulaires, un courant
surfacique de densité :

7521’1129.

Cette facon de procéder a I’avantage considérable de simplifier les calculs des gran-
deurs liées au circuit hélicoidal.

Cette situation se retrouve pour de nombreux circuits filiformes répartis en surface
et leur modélisation par une distribution de courants surfacique apporte souvent
une grande commodité de calcul.

3 Symétries des distributions de courants

3.1. Symétries usuelles

Nous allons étudier I’influence d’opérations simples (déplacements) sur une
distribution de courants & , comme nous 1’avions fait pour les distributions de
charges vues en électrostatique.

Les distributions de courants peuvent présenter des symétries remarquables.
Les symétries élémentaires sont les symétries et les antisymétries planes,
Pinvariance par translation selon un axe et I’invariance par rotation autour
d’un axe.

3.1.1. Symétrie plane
Nous considérons une distribution de courants telle que le plan (xOy) noté IT, soit
un plan de symétrie (ou plan-miroir) de la distribution.

Notons M’ (x, y, — z) le symétrique du point M (x, y, z) par rapport au plan I1.

3.1.1.1. Courants filiformes (doc. 10)

La distribution de courants filiformes est invariante par symétrie par rapport au plan
ITsi les circuits orientés sont inchangés par cette symétrie et si I’intensité en M
est égale a I'intensité en M.

3.1.1.2. Courants volumiques (doc. 11)

La distribution de courants volumlques est invariante par symétrie par rapport au
plan I7 si les densités de courant j et j~ en M et M’ sont symétriques I’une de
I"autre par rapport au plan I, soit ici :

Jx=Jx s f), :jy sJe ="z
3.1.2. Antisymétrie plane

Nous considérons maintenant une distribution de courants telle que le plan (xOy),
noté IT* soit un plan d’antisymétrie (ou plan anti-miroir) de la distribution.
Notons M’ (x,y,—z) le symétrique du point M (x, y, z) par rapport au plan IT*.

6. Distributions de courants

Doc. 9. Solénoide « simple couche ».

Doc. 10. Les courants circulant dans
€, €1, 6, et € forment une distri-
bution invariante par symétrie par rap-
port au plan 1.

Doc. 11. Symétrie plane.
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3.1.2.1. Courants filiformes

Le plan IT* est plan d’antisymétrie pour la distribution de courants filiformes
(doc. 12) si lors d’une symétrie par rapport a [T+ :

* les circuits non orientés sont inchangés,

* [’orientation des circuits change de sens,

* Iintensité en M est égale a I'intensité en M.

3.1.2.2. Courants volumiques

Notons encore j et j* les vecteurs densité de couranten M et M’. Le plan IT*
est plan d’antisymétrie pour la distribution de courants volumiques (doc. 13) si j~
est égal 4 I’opposé du symétrique de j par rapport & IT*, soit ici :

J; = _jx 5 ]}" = _jy ; ]Z’ :jZ'

Doc. 12. Les courants circulant dans
€1, €, €, et €5 forment une distri-
bution pour laquelle IT* est un plan
d’antisymétrie.

Doc. 13. IT* est un plan d’antisymétrie
pour la distribution de courants.

Courants sur les plans-miroirs et antimiroirs

Que peut-on dire des courants aux points M appartenant a
un plan-miroir I1 ou antimiroir IT* d’une distribution
de courants ?

En un point M appartenant a un plan-miroir IT, le vec-
teur j doit coincider avec son symétrique j’ puisque

appartient a ce plan. Les lignes de courant de la distribution
seront ainsi tangentes au plan-miroir, comme sur le docu-
ment 11 pour le plan-miroir (xOy) .
Si le point M est sur un plan-antimiroir 7%, le vecteur
j sera perpendiculaire a ce plan.
Sur le document 13, les lignes de courants coupent le
plan (xOy) perpendiculairement.

M’ =M . Par conséquent, sur un plan-miroir, le vecteur j

3.1.3. Invariance par translation

Une distribution est invariante par translation parallelement a un axe A lorsque le
courant en M est identique au courant en tout point M’ obtenu par une transla-
tion de M parallelement a cet axe. Il est nécessaire pour cela que la distribution
soit illimitée dans la direction de ’axe A.

3.1.3.1. Courants volumiques

Une distribution est invariante par translation le long de I’axe (Oz) si le vecteur
densité de courant j ne dépend pas de la coordonnée z :

J @y =iky).



3.1.3.2. Courants filiformes
Envisageons deux cas particuliers :

* Courant paralleles a ’axe A (doc. 14)

Une distribution de courants portés par un ensemble de fils rectilignes infiniment
longs et paralleles a I’axe A est invariante par translation (doc. 14). Rigoureusement,
une telle distribution est impossible car incompatible avec la nécessité de fermer
les circuits. En revanche, il peut s’agir d’une excellente approximation dans un
domaine limité de I’espace, a proximité des fils.

Notons que tout plan orthogonal a A est un plan anti-miroir pour cette distribution.
* Courants dans un plan orthogonal a A

Considérons le systeme de spires filiformes identiques et régulierement espacées
représenté sur le document 15. Au sens strict, cette distribution n’est pas invariante
par translation le long de A. Mais si les fils sont fins et tres proches les uns des
autres, un observateur un peu éloigné peut considérer qu’il s’agit d’une nappe conti-
nue, invariante par translation.

Notons que tout plan orthogonal a A est plan-miroir pour cette distribution.

3.1.4. Invariance par rotation

3.1.4.1. Courants volumiques

Pour une distribution de courants invariante par rotation autour de I’axe (Oz) (doc. 16),
les coordonnées de j , dans la base locale (¢;, €, €;) des coordonnées cylindriques
d’axe (Oz), sont indépendantes de 1’angle 6 :

J 0,2 =j-(n2)e +jg(n2)egt+j(n2)e;.
Notons que pour une distribution de courants invariante par rotation, le passage de

Jj (M) a j”(M’) s obtient par une rotation.

3.1.4.2. Courants filiformes

Pratiquement, nous trouvons deux cas de distributions filiformes invariantes par
rotation :

* Ensemble de spires circulaires d’axe (0z) (doc. 17)

Notons que dans ce cas, tout plan contenant 1’axe (Oz) est un plan anti-miroir de
la distribution de courant : I(r, 6, z) = I(r, z).

¢ Fil confondu avec I’axe (0z)

Dans ce cas, tout plan contenant 1’axe (Oz) est plan-miroir.

3.2. Distributions a symétries multiples

Les distributions que nous rencontrerons seront fréquemment invariantes vis-a-
vis de plusieurs symétries élémentaires. Les cas particuliers de distributions inva-
riantes par translation ou par rotation présentés possédaient ainsi déja des plans-
miroirs ou anti-miroirs.

3.2.1. Symétrie cylindrique

Une distribution a symétrie cylindrique est invariante par translation parallelement
a un axe (Oz) et invariante par rotation autour de cet axe.

La densité de courants doit donc étre de la forme :

) =j (e tjgr)eg+j, () e;.

6. Distributions de courants

Doc. 14. Distribution de courants fili-
formes invariante par translation paral-
lelement a A. TT* est un plan anti-miroir.

Doc. 15. Distribution invariante par
translation dans le cas limite oit les fils
sont tres serrés. (I) est un plan miroir.

Doc. 16. Invariance par rotation autour
de (07).

>

Doc. 17. Distribution de courants fili-
formes invariante par rotation d’axe

(0z).
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Nous pourrons rencontrer les cas suivants :
* courants plans et annulaires d’axe (07) :
J=Jgr)ey.

Pour ces courants, tout plan perpendiculaire a (Oz) est un plan de symétrie des
courants et tout plan contenant (Oz) est un plan d’antisymétrie (doc. 18).

C’est le cas des courants solénoidaux ou sur des spires (doc. 19).
* courants de direction (0z) :
J=ine.
Pour ces courants, tout plan perpendiculaire a (Oz) est un plan d’antisymétrie des

courants et tout plan contenant (Oz) est un plan de symétrie (doc. 20). C’est le cas
des courants filiformes sur un fil infini ;

* courants radiaux :

J=ire.
Pour ces courants, tout plan perpendiculaire a (Oz) et tout plan contenant (Oz) sont
des plans de symétrie des courants.

Doc. 19. Courants solénoidaux, ou sur ~ Doc. 20. Courant filiforme sur un fil
des spires. infini.

Les deux répartitions de courants précédentes sont a flux conservatif, quelle que
soit 1a fonction de r . En régime permanent, sans accumulateur de charges, la conser-
vation de la charge impose que ’intensité / soit la méme a travers tout cylindre de
rayon r, de hauteur 4 et d’axe (Oz). Ainsi, pour les courants radiaux :

2nrhj, (r) =1 ouencore j = é ey .

C’est le cas des courants radiaux existant dans une diode a vide a symétrie
cylindrique dont la cathode est confondue avec 1’axe (Oz) (doc. 21).

3.2.2. Symétrie sphérique

La distribution est invariante par rotation autour de tous les axes passant par le centre
de symétrie. Elle I’est aussi par rapport a tout plan contenant ce méme point.

En utilisant les coordonnées sphériques r, 6 et ¢ avec origine au point centre de
symétrie, nous avons (doc. 22) :

j e p=jine,.

En régime permanent, sans accumulation de charges, la conservation de la charge élec-
trique impose que I’intensité / soit la méme a travers toute sphere de centre O, soit :

durj(ry=cte=1.

Ceci impose I’existence d’une source de charges au point O et d’intensité /, par
exemple sous la forme de courant d’amenée filiforme.

Doc. 18. Distribution de courants annu-
laires.

cathode
gaz d'électrons
\_é_/ dans le vide

I I

I I

I I

|-

L |i=i0e
L

I I

I I

Doc. 21. Courants a symétrie cylin-
drique.

Doc. 22. Courants a symétrie sphérique.



Application 3

Exemples de courants surfaciques

Identifier les symétries des distributions surfaciques de
courants suivantes :

a) nappe plane de courants confondue avec le plan (yOz)
et de densité js = jsey uniforme ;
b) nappe hélicoidale de courants de densité :

Js = Jse€o +isz €
(avec jsget js, uniformes) sur un cylindre de rayon R
et d’axe (07).
a) La distribution est invariante par translation selon ey
et e,,car jg nedépendnidey,nidez.

Tout plan parallele a (xOy) est un plan-miroir, alors que
tout plan parallele a (xOz) est un plan-anti-miroir.

6. Distributions de courants

Aucune symétrie de rotation (ou invariance par rotation)
n’intervient.

b) La distribution est invariante par translation selon e,
et jg ne dépend pas de la variable z .

Elle est de plus invariante par rotation autour de (0z),
car jg ne dépend pas de 6.

Il n’existe aucun plan de symétrie, ni d’antisymétrie.

Il sera judicieux de traiter une telle distribution comme
résultant de la superposition d’un courant de densité sur-
facique ‘]Tgl =js, €, et d’un courant de densité surfa-
cique EZ = jsp €y, qui, traités séparément, ont des pro-
priétés de symétries planes remarquables.

A C Q F R

® COURANT ELECTRIQUE

Un courant électrique résulte d’un mouvement d’ensemble (ou de dérive) des porteurs de charges.

L’intensité I(S,t) du courant électrique a travers une surface S est liée a la charge 8 Oy, quitravers S entre

les instants et t + 0t, par la relation :

80 =1(S,1)d1.

L’intensité, grandeur électrique, dépend de I’orientation de S et s’évalue en ampere (A).

@ DISTRIBUTIONS DE COURANTS

Une ligne de courant est une ligne en tout point de laquelle le vecteur densité du courant lui est tangent.

Un tube de courant est un ensemble de lignes de courant s’appuyant sur un contour.

En régime permanent statique (indépendant du temps), I’intensité d’un courant filiforme a la méme valeur en

tout point d’un fil sans dérivation.

En régime permanent statique (indépendant du temps), un courant filiforme ne peut exister que sur un circuit

fermé.

Le vecteur densité volumique associé a un mouvement d’ensemble a vitesse v est :
J =nqu=pnv.
L’intensité du courant électrique traversant une surface S est égale au flux du vecteur densité volumique de

courants j (i, 1) A travers cette surface :

1(S,t)=US7(F,t).d’S’.

Les distributions de courants peuvent présenter des symétries remarquables. Les symétries élémentaires sont
les symétries et les antisymétries planes, I’invariance par translation selon un axe et 1’invariance par rotation

autour d’un axe.
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Contrite rapide

¢ Définir ’intensité 1(S, t) d’un courant électrique a travers une surface S .

v Citer et définir les divers types de courants électriques.

v/ Quelle relation lie le vecteur densité de courant 7 d’un courant de conduction, a la vitesse d’ensemble des

charges mobiles v ?
v/ Définir le vecteur densité surfacique de courant j.

v’ Démontrer qu’en régime permanent, I’intensité / est la méme en tout point d’un conducteur filiforme.
v Définir une distribution de courants filiformes antisymétrique par rapport au plan IT*,

une surface fermée S est nulle.
3 Vrai O Faux

2. Les courants filiformes sont des courants fer-

més, en régime permanent.
Q Vrai O Faux

3. Quand des charges sont déposées sur un isolant,

elles ne peuvent pas créer de courants.
U Vrai Q Faux

Du tac au tac (Vrai ou faux)

I. En régime permanent, Pintensité traversant

4. Pour une spire circulaire de centre O et d’axe

(Oz) parcourue par un courant I, tout plan
contenant I’axe (Oz) est plan de symétrie.
O Vrai U Faux

5. Pour une spire circulaire de centre O d’axe

(Oz) parcourue par un courant | le plan z=0
est plan de symétrie.

O Vrai 1 Faux

P Solution, page 114.



Exercices

6. Distributions de courants

4

- Spire portant un courant filiforme

d’intensité |

X

Soit une spire de rayon a et
d’axe (0Oz), parcourue par un
courant d’intensité / .
Quelles sont les symétries et
invariances de cette distri-
bution ?

% Systeme de deux fils infinis paralléles

Soit deux fils infinis paralleles <

a I’axe (Oxz), passant par les
points A (0, —a, 0) et
A»(0, +a, 0) portant des cou-

rants filiformes 7, et I5. |p, h b P,
Définir les symétries et inva-
riances de cette distribution 0 y

dans les trois cas suivants :
1) I; et I, quelconques ;
)1 =1 =1;

NI =Iletly=—1.

. Demi-cylindre portant une distribution
de courants filiformes rectilignes

e

Un ensemble infini de fils rectilignes jointifs de longueur infi-
nie et de faible section est disposé sur un demi-cylindre d’axe
(Oz), parallelement a cet axe.

1) Soit n le nombre de fils par unité de longueur le long d’un
demi-cercle de section droite du cylindre et / 1’intensité des
courants dans les fils, déterminer le vecteur densité surfacique
de courant jg de la nappe de courant équivalente.

2) Etudier les symétries et les invariances de cette distribu-
tion surfacique.

é Plan portant une distribution de courants
filiformes rectilignes

Un ensemble infini de fils rectilignes jointifs de longueur infi-
nie et de faible section est disposé dans le plan (xOz) paral-
lelement a I’axe (Oz).

1) Sachant que le nombre de fils par unité de longueur paral-
Ielement a I’axe (Ox) est n et que l'intensité des courants
dans chacun des fils est 7, déterminer le vecteur densité sur-
facique de courant jg de la nappe de courant équivalente.

2) Quelles sont les symétries et les invariances de cette dis-
tribution surfacique de courants.

4

. Courant angulaire

M

Soit un courant angulaire )

constitué de deux courants

rectilignes semi-infini faisant

un angle 26 entre eux. L 0 X
s 0 <

Quelles sont les symétries et

invariances de ce systeme de

courants ?

6{ Courants filiformes a I’'intérieur

d’une gaine cylindrique
A Pintérieur d’un cylindre d’axe (Oz) se trouve un ensemble
compactde N fils rectilignes de longueur infinie et de faible

section disposés parallelement a (Oz). L’intensité de chacun
des courants filiformes est 1 .

1) Déterminer le vecteur densité de courant volumique j, de
la distribution volumique équivalente.

2) Quelles sont les symétries et les invariances de cette dis-
tribution volumique ?

Z

s Cylindre avec cavité portant

une densité volumique de courants

Un cylindre infini a base
circulaire est parcouru par un z
courant volumique uniforme
parallele a ses génératrices.
Dans ce cylindre existe une
cavité cylindrique de base cir- E
culaire et de génératrices
paralleles au cylindre précé-
dent. Etudier les symétries et
invariances de cette réparti- l 1
tion de courants.

=
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Exercices

§ Courant filiforme sur une hélice
Le schéma ci-dessous représente une hélice droite d’axe (Oz),
correspondant a I’ensemble des points en coordonnées carté-

[7_2 , O variant de

siennes {x =Rcos () ;y=Rsin(0);z = 7

O min @ Omax} -
Cette hélice est parcourue par un courant filiforme 7 .
Quelles sont les symétries ou invariances de cette répartition
de courants ? Examiner le cas de I’hélice infinie pour :

Omin = —® et Opax =+ .

N ,
= - - - - - 7
; 7 P P > >
{ / 4 / / / /\x/% -
4 / A [N
/ / / / / / ELIIIN
! I I I I I r’\;
i 1 1 1 1 1
\ \ \ \ \ \ ' ! 4
\ \ \ \ \ \ ‘o
\ !
N N N N N N \\

y# Rsin 6

’9”, Bobinage simple couche

Un bobinage est réalisé sur un cylindre d’axe (Oz), entre les
plans de cote z; et zp, al’aide d’un fil de faible section.

Les spires sont jointives et parcourues par un courant d’in-
tensité /.

Nous modéliserons ce bobinage comme un ensemble de spires
circulaires d’axe (Oz) dont le nombre par unité de longueur
parallelement a I’axe (Oz) est n .

1) Montrer que cet ensemble de courants filiformes est modé-
lisable par une nappe de courant dont la densité superficielle
est, en coordonnées cylindriques d’axe (Oz) :

Jjs=nleg.

2) Le cylindre étant de dimension finie, quelles sont les symé-
tries et les invariances de cette distribution de courant ?

3) Examiner le cas d’un cylindre de longueur infinie.

Corrigeés

Solution du tac au tac, p. 112.

l. Vrai 4, Faux
2. Vrai 5. Vrai
3. Faux

j,,,, Le plan (xOy) est un plan de symétrie des courants (/1) .

Les plans (xOz) et (yOz) sont des plans d’antisymétrie des courants (II¥). Il en est
d’ailleurs de méme pour tout plan contenant Iaxe (0z) .

Le systeme de courants est invariant par toute rotation autour de (0z) .

Z‘ . Dans les trois cas :

g
+ le plan (yOz) est un plan de symétrie des courants (I]) ;

* tout plan perpendiculaire a I'axe (Oz) (en particulier (xOy)) est un plan d’antisy-
métrie des courants (IT¥) ;
* larépartition est invariante par toute translation suivant (0z).

1) Aucune autre symétrie ou invariance.
2) Le plan (xOz) est un plan de symétrie des courants (II) .

3) Le plan (xOz) est un plan d’antisymétrie des courants (II¥) .

5 Djs=nle =jsE,.

et
2) « Plans de symétrie des courants (IT) :

- leplan (x0z) ;

— tout plan perpendiculaire & (Ox) (en particulier (yOz)).
¢ Plans d’antisymétrie des courants (II¥) :

—tout plan perpendiculaire a (0z) .



6. Distributions de courants

L

A

plan d’antisymétrie (II*) des courants. Il n’y a aucune invariance.

. Le plan (xOy) est un plan de symétrie (IT) des courants. Le plan (xOz) est un

s 1)]_.;‘:”16.: :jSEZ'

2) Le plan (xOz) est un plan de symétrie (/) des courants.

Tout plan perpendiculaire a I'axe (Oz) est un plan d’antisymétrie (II*) des courants,
en particulier le plan (xOy) .

S y;-m
- N

2) Tout plan passant par (Oz) est un plan de symétrie des courants (II), en
particulier (xOz) et (yOz). Tout plan perpendiculaire & (Oz) est un plan d’antisymétrie

1= N _ g,

des courants (II*). Le systéme est invariant par toute translation suivant (0z), et par
toute rotation autour de I’axe (0z).

pr

e
culaire a I'axe (0z) est un plan d’antisymétrie (I¥) des courants. Le systéme de cou-
rants est invariant par toute translation suivant (0z).

Le plan (xOz) est un plan de symétrie (II) des courants. Tout plan perpendi-

Si 0 et 0y sont confondus, alors tout plan contenant I'axe (Oz) est un plan de symé-
trie (1) des courants et le systéme de courants est invariant par toute rotation autour
deI'axe (07) .

e ® Hélice de dimension finie

Lorsque I'hélice est de dimension finie, il n’existe aucune symétrie et invariance.

* Hélice de dimension infinie
Lorsque I'hélice est de dimension infinie, il y a une seule symétrie remarquable :
invariance par translation d'une longueur multiple entier du pas p de I'hélice.

gﬂ,) 1) Soit L=27p-z;. Sur une section du bobinage, passe une intensité totale

égalea n LI etles lignes de courant sont orientées comme . D’apres la définition
de la densité surfacique de courant :

Li=nlLl soit: jg=nl¢y.

2) Nappe solénoidale finie

Tout plan passant par 1'axe (Oz) est un plan d’antisymétrie (/I*) des courants. Le systeme
de courants est invariant par toute rotation autour de (0z).

2t 2y)
2

Le plan de cote est un plan de symétrie (IT) des courants.

3) Nappe solénoidale infinie
Tout plan passant par I'axe (Oz) est un plan d’antisymétrie (/I*) des courants. Le
systeme de courants est invariant par toute rotation autour de (0z).

Tout plan perpendiculaire a (Oz) est un plan de symétrie (/1) des courants.
Le systeme de courants est invariant par toute translation suivant (0z).
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Champ
magnétique

B Obtention du champ magnétique par la loi
de Biot et Savart.

B Propriétés de symétrie.

B Flux du champ.

PREREQUls

M Distributions de courants.
B Etude du champ magnétique du cycle secon-
daire.

/V‘z'f.f .

Un courant électrique crée un champ magnétique,

et un fil parcouru par un courant placé dans

un champ magnétique subit une force dite de Laplace.
Historiquement ces notions se sont imposées

progressivement, la référence a la matiére aimantée
compliquant 'interprétation des phénomenes.

Tout ou presque débute en 1819

avec Hans-Christian Oersted, physicien danois,

qui observe le déplacement d’une aiguille aimantée
a proximité d’un fil conducteur

parcouru par un courant électrique.

En 1820, Jean-Baptiste Biot et Félix Savart
étudient les propriétés de la force

« subie par l'un des poles magnétiques »

de ’aiguille aimantée et

Pierre-Simon de Laplace traduit cette loi

par une formule qui porte le nom de Biot et Savart.

André-Marie Ampere (1775-1836),

considéré comme le fondateur de 1’électromagnétisme,
déduit de cette étude la notion

et les propriétés du champ magnétostatique

créé par des courants.

Le choix du nom de ce physicien frangais,

pour l'unité d’intensité électrique

dans le systeme international d’unités,

est une reconnaissance de ses travaux en électricité.



I Force de Lorentz et champ magnétique

I.1. Force de Lorentz

Nous savons qu’un aimant ou une bobine de spires conductrices parcourues par un
courant électrique sont sources de champs magnétiques B . Ces champs se mani-
festent par la force de Lorentz que subit une particule mobile de charge g et de vitesse

v: F =quv AB ,ouparlaforce de Laplace que subit un élément d€ de circuit
parcouru par un courant d’intensité / :
dF =1d( NB .

Nous n’étudierons dans ce cours que le champ magnétique créé par des courants.

Remarque : Rappelons qu’il existe un champ magnétique terrestre (cf. chapitre 9) dont
la composante horizontale, en France, est de Iordre de 2.1077 tesla.

1.2. Cadre d’étude

Les lois a venir sont rigoureusement valables dans le cas de la magnétostatique, c’est-
a-dire pour des régimes indépendants du temps (courants constants, pas d’accumula-
tion de charges). Nous emploierons souvent I’expression « champ magnétique » au
sens de « champ magnétostatique » par la suite.

Ces lois sont encore applicables a des dispositifs expérimentaux de dimension carac-
téristique L, dans le cas des régimes variables de temps caractéristique 7, tant que
L << cTou c estla vitesse de la lumiere dans le vide. La justification de cette
approximation des régimes quasi-permanents (ou « lentement variables ») sera vue
en seconde année.

Application 1

Cadre de I’'approximation des régimes Le temps caractéristique du probleéme est :
lentement variables 1
T= 7 =0,1 ms.

Nous désirons étudier le champ créé par une bobine ’
(extension de I’ordre de 10 cm) parcourue par un cou- Dans ces conditions, ¢7' =30 km (cT est la longueur
rant I sinusoidal de fréquence f =10 kHz . La loi d’onde, dans le vide, d’une onde électromagnétique de
de Biot et Savart, que nous allons énoncer, donnant fréquence f).
le champ magnétique dans le cas d’un régime Le champ magnétique, calculé a I’aide de la loi de Biot
permanent, vous semble-t-elle utilisable pour évaluer le et Savart, décrira le champ réel avec une excellente
champ créé a quelques metres de la bobine ? approximation a des distances faibles devant cT .

7. Champ magnétique

B Mesure du champ

La force de Laplace (vue en classe de premiere), subie par un élément d€ de cir-
cuit parcouru par un courant d’intensité i : dF = =idl A B ,est mesurable.

Le champ magnétique B appliqué a un circuit parcouru par un courant  peut donc
étre mesuré a partir de la mesure de la force F' subie par celui-ci (doc. 1).

En fait une sonde a effet Hall, moins encombrante et plus précise, sera générale-
ment préférée pour la mesure des champs magnétiques.

Doc. 1. Force de Laplace s’exercant sur
lerail A1A; .
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2 Loi de Biot et Savart

2.1. Vecteur élément de courant

+ Considérons un circuit filiforme parcouru par un courant d’intensité / et notons d€
un déplacement élémentaire le long de ce circuit, dans le sens que du courant (doc. 2).
Par définition, on appelle élément de courant le vecteur polaire :

dC =1d¢€ .
La norme d’un élément de courant s’évalue en A.m.

* Lorsque la section du circuit n’est plus petite a 1’échelle macroscopique, il est perti-
nent, sinon indispensable, de s’interroger sur la répartition du courant dans le circuit.
Pour cela nous serons obligés d’introduire une modélisation continue. Nous analyse-
rons alors le circuit comme un ensemble de tubes de courants mésoscopiques, fili-
formes, jointifs, d’intensité dI , placés a I’intérieur de la surface externe du circuit
(doc. 3a). A un élément de longueur d¢ d’un tube de courant mésoscopique, sera
associé le vecteur de courant : dC' =d/d€ . Notons s la section de ce tube de courant
et j le vecteur densité volumique de courant 2 travers la section considérée, il vient :
dC =dld€ =jsdl =jdr
puisque j et d€ sont colinéaires et de méme sens.

Une distribution volumique de courants peut s’analyser en une distribution conti-
nue de courants filiformes mésoscopiques.

Cette équivalence est fréquemment utilisée. En effet, dans la pratique, nombre de
circuits filiformes se présentent sous la forme de bobinages multicouches avec des
spires jointives de faible section. La structure d’une telle bobine, avec ses spires
filiformes, rappelle en tous points celle du courant précédent lorsqu’il est analysé
en tubes de courant mésoscopiques. Pour calculer les champs créés par de tels cir-
cuits, il sera alors tres commode d’avoir recours a une modélisation volumique,
continue, nivelant le caractere discret du bobinage.

* Une démarche analogue peut étre adoptée pour une distribution de courants sur-
faciques. Tout courant surfacique peut étre analysé comme une distribution conti-
nue de rubans mésoscopiques, filiformes, jointifs, d’intensit¢ d/ (doc. 3b). A un
élément de longueur d€ d’un ruban de courant mésoscopique, sera associé le vec-
teur de courant : dC = dI d€ . Notons a la section d’un ruban de courant et j; le
vecteur densité surfacique de courant a travers la section considérée, il vient :

dC =dId€ =j,adl =j.dS
puisque j; et d€ sont colinéaires et de méme sens.

Cette équivalence pourra étre utilement exploitée quand il s’agira, par exemple, de
calculer le champ créé par une bobine monocouche a spires jointives de faible sec-
tion.

Une distribution surfacique de courant peut s’analyser en une distribution conti-
nue de courants filiformes mésoscopiques.

* En conclusion, nous retiendrons que :

Toute distribution de courants peut s’analyser comme une distribution de
courants filiformes dont la caractéristique locale est I’élément de courant dC .

Par la suite, cette analyse ne sera pas toujours explicitement faite sur les distribu-
tions de courants étudiés, mais il ne tient qu’au lecteur de s’en convaincre en I’ef-
fectuant.

dC
2z
7 de

1

Doc. 2. Elémentie courant d’un cou-
rant filiforme : dC =1d€ .

Doc. 3a. Tube de courant mésoscopique
considéré comme circuit filiforme :
dC =jdr.

vy |/

Doc. 3b. Ruban de courant mésosco-

pique considéré comme circuit fili-
forme :

dC = jdS.



7. Champ magnétique

2.2. Champ attribué a un élément de courant

Alors que les charges sont les sources du champ électrostatique, les éléments de _
courant sont les sources du champ magnétique. dB(M)
Nous postulons que I’expression de la contribution d’un élément de courant M
dC , situé au point P, au champ total B (M) créé en M par une distri-

bution de courants est donnée par la loi de Biot et Savart : dc

o= B0 g €pom_Mo g PM ~
dB (M) n dC N “PMHZ S dC AN ||PM”3 PY ey

_ Doc. 4. dB est perpendiculaire au plan
Le champ B (M) étant la somme des contributions élémentaires, avec défini en P par les vecteurs dC et PM.

dC =jdrou dC =deS ou dC =Idl selon les cas.

Comme il est impossible d’isoler un élément de courant, nous ne pouvons pas véri-
fier directement ce postulat : la seule grandeur ayant une signification physique (en
tant que grandeur mesurable) est le champ résultant B créé par toute la distribu-
tion de courants .

Le coefficient g, dimensionné, vaut exactement pug =4x.10~7 H.m~!
(H désigne le henry, unité d’inductance).

L’unité de champ magnétique est le tesla (symbole : T) .

* Nous pouvons aussi attribuer un élément de courant a chaque particule chargée
en mouvement. Imaginons que sur une longueur € d’un fil conducteur, il y ait N
particules mobiles de charge ¢ et de vitesse v. Ces N particules traversent

une section du fil pendant la durée 8¢ = % , d’ou la valeur de ’intensité :
Ng v
=
Y4
et donc pour I’élément de fil :
5C =N qv.

Nous pouvons associer a chaque particule en mouvement un élément de courant :
C=qv.

Awpplication 2

Unités de B et U

Exprimer les dimensions de B et g a 'aide des uni- Utilisant I’expression de la loi de Biot et Savart, nous
tés - kg, m,s et A du Systeme International d’unités. avons :
F = gv A\ B estune force, mesurée en kg.m.s~ 2. La (o] =[B] [longueur?|
dimension du champ magnétique est donc : ko [dC]
[force] [force]

Bl = - = - = 2 A—1 -1
LB [charge.vitesse]  [courant.temps.vitesse] T.m" A" ".m

=kg. A" Ls72=T, =kg.m.A" 25" 2,
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2.3. Expression du champ magnétique par la loi de Biot
et Savart
La loi Biot et Savart postule que le champ créé en un point M par une distribution

9 (doc. 5) s’obtient par superposition des contributions élémentaires d B des
éléments de courant de la distribution :

— Uy — é
B(M)= f h OdC/\ P—=M .
4 P

Suivant le type de distribution, nous écrirons ce champ sous I'une des formes suivantes.

B Distribution volumique

-

son- 1 [[[ 7 @een ren.
BOD= gz )]}, 7O Ty

B Distribution surfacique

son= Y ([ €rou
B M) - 4nff@JS(P)dS/\ =
M Distribution filiforme
_, Mof S A €pom
- — | IdP N\ .
B (M) 431: o PMZ

Le régime permanent imposant au courant d’étre « bouclé sur lui-méme », cette
derniere distribution a la forme d’un contour C, et nous pourrons aussi écrire :
€p—um

5 A .
}CIdP v

Uy

B M) = -

Remarques

* L’analogie de ces expressions avec celles donnant le champ électrostatique d’une

u
1 en ! 0
4dme,, 4

en [dC A] dans les expressions donnant le champ. Nous verrons en seconde année
que cette analogie a une signification profonde. Les champs électrostatique et
magnétique sont deux facettes d’'un méme objet, le champ électromagnétique.

distribution est remarquable : il suffit de transposer et [dgp]

* Pour une distribution volumique de courants, l'intégrale de Biot et Savart permet
le calcul du champ magnétique en tout point de I’espace.

* Dans le cas d’une distribution surfacique, cette intégrale n’autorise pas le calcul
du champ sur la nappe de courant. (Nous verrons qu’il existe une discontinuité
finie de la composante tangentielle de B a la traversée de cette surface.)

* Pour une schématisation filiforme, il est exclu de calculer le champ magnétique

en un point du circuit : l'intégrale y est alors divergente. (Observer le résultat du
calcul du champ d’un fil rectiligne infini lorsque r tend vers 0, dans ’exercice 5 .)
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Doc. 5. Champ magnétique d’une dis-
tribution de courants.



Application 3

Champ créé par une spire circulaire
sur son axe

Calculer le champ magnétostatique créé par une spire
de rayon R en un point M de son axe, le rayon de la spire
étant vue sous ’angle o depuis M (doc. 6).

Doc. 6. Spire circulaire.

Associons a un point P sur la spire, repéré par ses coor-
données cylindriques R , 6 et zp =0, un élément de
courant dC = IRd#.eg . Le champ élémentaire d B
attribué a cet élément de courant est représenté sur le
document 7.

Lorsque le point P décrit la spire, 6 varie de 0 a 2, et
d B décrit le cone de sommet M et de demi-angle

% — o . Par conséquent, le champ total B (M) sera
dirigé selon (Oz) :

7. Champ magnétique

P -
€p—~ =1
! rM dB

|
R
! a

\
‘\
n ‘I
I'lo M:; Z
1
\\/’

Doc. 7. Elément de champ magnétique.

. . 2 .

B M) =(B (M).e7).e7=<f“ dB.;).ej.
=0

Or, nous avons :

. unl ep_.
dB.e7=(i Rdf.eg A —F M).e‘z’

4r r2
ol G Nepy\ —_ Ul sin’a |
A Rd@( R )2 ey = 4 0 R
sin o

Le champ magnétique d’une spire circulaire sur son
axe vaut :
ol
2R
En particulier, le champ magnétostatique créé au centre

de la spire vaut :
B(0)=

B (M) = sin3 o.e, .

[ -

TR

Ces deux résultats méritent d’&tre mémorisés (et doivent
pouvoir étre retrouvés rapidement).

» Pour s’entrainer : ex. 6, 7, 8 et 9.

3 Topographie du champ

3.1. Lignes de champ

3.1.1. Définition

Le champ est continuellement tangent a des courbes appelées lignes de champ

(doc. 8). Ces lignes sont orientées dans le sens du champ.

3.1.2. Equation d’une ligne de champ

Un déplacement élémentaire dM le long d’une ligne de champ est parallele au
champ B . L’équation différentielle (vectorielle) d’une ligne de champ est :

dM AB =0 .

Nous obtiendrons la ligne de champ issue d’un point initial donné par intégration

de cette équation différentielle.

ligne de champ

Doc. 8. Exemple de ligne de champ.
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3.2. Visualisation d’une ligne de champ

3.2.1. Expérimentalement

Il est possible de visualiser les lignes de champ d’un systeme de courants (ou d’ai-
mants) en procédant de la maniere suivante.

Sur une plaque de verre ou de plexiglas, située dans la zone utile du champ magné-
tique, on saupoudre de la limaille de fer. Les grains de limaille (de forme allongée)
sous I’action du champ magnétique se transforment en petits aimants (ou petites
boussoles) qui s’orientent alors parallelement a ce champ magnétique.

L At

Ces petits aimants s’alignant les uns derriere les autres concrétisent approximati-
vement une ligne de champ (doc. 9). On obtient ainsi les spectres magnétiques des
documents 10 et 11.

limaille de fer

Doc. 9. Les éléments de la limaille de fer
se comportent comme des petits aimants
qui s orientent parallélement au champ
magnétique.

d’un solénoide (ensemble de spires).

3.2.2. Par simulation

Lors d’un tracé de ligne de champ par simulation (doc. 12), 1’équation différen-
tielle dM A B =0 estrésolue en partant d’un point donné de 1’espace.

3.3. Tube de champ

L’ensemble des lignes de champ s’appuyant sur une courbe fermée (ou contour) C
engendre une surface S appelée tube de champ, représenté sur le document 13.

3.4. Points de champ nul, points singuliers

Deux lignes de champ ne peuvent pas se couper, comme le suggere le document 14,
en un point M ou le champ magnétique est défini et non nul. La direction du champ,
donc le champ lui-méme, ne serait pas définie en ce point.

Si le champ est nul au point M, alors M est appelé point de champ nul (ou point
d’arrét).

Propriétés de symétrie
du champ magnétique

Comme en électrostatique, le calcul de la valeur du champ a partir des intégrales
est souvent pénible ; nous rencontrerons des situations ot la distribution de charges
possede des symétries remarquables, qui peuvent simplifier considérablement la
détermination du champ.
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Doc. 11. Exemple : spectre magnétique
d’un aimant.

Doc. 12. Lignes de champ du vecteur
champ magnétique créé par une spire.

lignes
de champ

contour C

tube de champ (S) _—7
Doc. 13. Tube de champ.

Doc. 14. Point de champ nul.
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4.1. Symétrie plane

Supposons la distribution & invariante par une symétrie plane ¥ par rapport a
un plan IT.

Doc. 15 a. Doc. 15 b. Doc. 15 c.

Placons-nous en un point M du plan de symétrie. Considérons les contributions
élémentaires dBp(M) et dBp-(M) au champ total des deux éléments de
courants dC et dC” associés aux points P et P’ symétriques 1’un de I’autre par
rapport & IT. Le document 15 fait apparaitre les différentes orientations de dC et
dC’ envisageables, et montre que dB +dB” est perpendiculaire au plan IT .

Nous pouvons ainsi conclure (doc. 16 a) :

Le champ magnétique B est perpendiculaire a un plan-miroir I7en chacun
de ses points.

Plus généralement, nous aurons (doc. 16 b) :
Au point M’ symétrique d’un point M par rapport a un plan-miroir I7,

le champ magnétique B’ est ’opposé du symétrique du champ B en M par
rapport a ce plan.

B
- M ~M' M B

CASD) (C2D

I I
Doc. 16 a.Champ magnétique sur un  Doc. 16 b. Champs en deux points symé-
plan de symétrie. triques.
En résumé : B (S(M))=-S(B(M)).

Remarque

Nous laissons le soin au lecteur de s’en convaincre en utilisant une méthode analogue
a celle qui a été utilisée a ce propos pour le champ électrostatique au chapitre 2, ce qui
est un peu fastidieux, et proposons au lecteur I'application qui suit pour se convaincre
des propriétés particulieres de symétrie du produit vectoriel de deux vecteurs.
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Application <

Transformation du produit vectoriel
de deux vecteurs

Considérons le triedre trirectangle direct des trois vec-
teurs unitaires (e | , e, , e3) pour lequel
ey =e| Ney (doc. 17).

1) Construire le triedre de vecteurs (eT , e‘{ s e? )
obtenu par la rotation du précédent triedre d’un angle
égal a w autour de I'axe (07). La rotation a-t-elle conservé
les propriétés du triedre initial ?

2) Reprendre I’étude précédente en considérant I’opé-
ration de symétrie plane par rapport au plan (xOz) qui

1) La construction est représentée sur le document 18.
Nous pouvons constater que le triedre (eT , e? , e? )
est un triedre orthonormé direct. Les rotations conservent
le produit vectoriel : R (Z A ej) =R (eT) AR (ej).

2) Pour I’opération de symétrie plane, qui transforme
encore le point M en M”, nous remarquons que le tri-
edre (eT s e? s e?) est orthonormé, mais indirect.
L’opération de symétrie plane inverse le produit vecto-
riel (doc. 19):  S(e; Ney)=—S(e;)AS(ey).

Le champ magnétique donné par la loi de Biot et Savart fait
intervenir le produit vectoriel de deux vecteurs polaires. Ceci
explique le comportement particulier du champ magnétique

conduit au triédre (e | ,e5 ,e?3 ). Conclusion ?

lors d’opérations de symétrie plane.

Z - - Z - -, V4 -
€3 €3 €3 e €3
Ml—>e§ ;2<—<lM’ M+l_>e+2 ;'2<—lM' M+l—>€$2
€] e’ e e’ ]
%5 y % y %5 y
Doc. 17. Doc. 18. Doc. 19.
B
4.2. Antisymétrie plane M
Pour une distribution & possédant un plan d’antisymétrie I1°, et pour un point M
appartenant a ce plan, il suffit de changer le sens du champ élémentaire dB p- dans
les raisonnements précédents. Par conséquent (doc. 20 a) :
Le champ magnétique B est contenu dans un plan-antimiroir I7 * en chacun 1T

de ses points.

Plus généralement (doc. 20 b) :

Au point M’ symétrique du point M par rapport au plan-antimiroir 17 *, le
champ magnétique B’ est le symétrique du champ B en M .

Exemple : Considérons une spire circulaire d’axe (Oz) parcourue par un courant
L. Les lignes de champ seront dans des plans contenant I’axe (0Oz) qui sont des
plans-antimiroirs de cette distribution. Nous choisirons donc le plan (xOz) pour
représenter quelques lignes du champ magnétique de la spire (doc. 12), dont nous
pouvons ainsi illustrer les propriétés lors d’opérations de symétrie plane.
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Doc. 20 a.Champ sur un plan d’antisy-
métrie.

H*

Doc. 20 b. Champs en deux points symé-
triques.
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* Les plans contenant I’axe (Oz) de la spire sont des plans-antimiroirs.
Sur I’axe (Oz), le champ magnétique est paralléle a e, . Cette observation est en

. uel .
accord avec la valeur B (M) = - sin3

0
2R
(cf. Application 3).
Au point M’ (x, 0, z) symétrique du point M (- x, y, z) par rapport au plan-
antimiroir (yOZ), le champ magnétique B’ est le symétrique du champ B par rapport
a ce plan.

* Le plan (xOy) de la spire est un plan-miroir. Doc. 21. Invariance par translation dis-
Sur le document 12, les lignes de champ coupent I’axe (Ox) perpendiculairement.  13t¢

Le champ est identique aux points A (0,0, z¢) et A’ (0,0,—z¢) (ce qui revient
a changer ocen m — o dans ’expression (x)).
Au point M” (x, 0, —z) symétrique du point M (x, 0, z), le champ B” est I'op-
posé du symétrique de B par rapport i (xOy) .

o.e, (%) que nous avons déja calculée

4.3. Invariance par translation

Lorsqu’une distribution & est invariante par une translation de A z parallelement
a I’axe (Oz), un observateur percevra la méme distribution s’il est au point de
coordonnées cartésiennes (x, y, z) ou en un point translaté du précédent de coor-
données (x, y, z +n Az), ol n est un entier. Le champ sera donc identique en ces
deux points (doc. 21): B (x,y, z +nAz) =B (x, y, z) . Ce n’est possible que pour
les distributions illimitées dans la direction de la translation.

Pour une distribution invariante par (toute) translation selon la direction de I’axe (Oz),
le champ magnétique sera de la forme B (x, y, 2) =B (x, y).

Application J

Champ magnétique
d’une distribution de courants plans

Déterminer la forme du champ magnétique créé par des
courants plans :

J ey =iy ey Hiy(xy ey .

Tout plan perpendiculaire a I’axe (Oz) est un plan-miroir |0 9

de la distribution (doc. 22), le champ magnétique est - ) Q*"

parallele a e~ . La distribution étant invariante par trans- < - [ )

lation parallelement a ce vecteur, nous aurons donc : A A
B (x,y,2=B(xy)e, . Doc. 22.

R (Ox)

4.4. Invariance par rotation

Pour une distribution & invariante par une rotation % d’angle o = 2 (n entier)

1 R(0y)
autour de I’axe (Oz), deux observateurs placés en M et M’ = R (M) percevront la

méme distribution (doc. 23).

Le champ au point M’ est le méme qu’au point M, a une rotation autour de e,
d’angle « pres.

Remqrgue : Ce résultat est'a rapprgcher de I’étude faite dans I’Application 4, une  Dpoe. 23. Invariance par rotation avec
rotation conserve le produit vectoriel. n=6
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Application

Champ d’une distribution
de courants axisymétriques

Déterminer la forme du champ magnétique engendré
par une distribution axisymétrique :

J=ire +j,(oe;.

Tout plan méridien est un plan-miroir IT ; le champ
magnétique en M est donc orthoradial :

B(M)=By(r;, 6,2) ¢ .

La distribution étant de plus invariante par toute rotation
d’axe (0Oz), nous pouvons simplifier encore la forme du

champ B (M) =By(r,z) ey .

Doc. 24. Courants axisymétriques.

4.5. Le champ magnétique est un vecteur axial

Les études précédentes nous amenent a une conclusion simple : lors d’une symétrie
plane appliquée a la distribution de courants & , le champ magnétique subit la méme
symétrie avec en plus un changement de signe.

Les opérations de symétrie, telles qu’une rotation autour d’un axe ou une transla-
tion, peuvent étre vues comme le produit de deux symétries planes, ce qui a pour
effet de supprimer le changement de signe.

Nous appelons vecteur axial un vecteur dont le champ a cette propriété.

Le vecteur champ magnétique est un vecteur axial a cause du produit vectoriel que
I’on trouve dans I’expression de la loi de Biot et Savart. Il est facile de vérifier (cf.
Application 4) que, pour une symétrie par rapport a un plan I7:

S AV)==S(u)NSV).

Pour qualifier cette propriété, nous trouvons aussi le terme « pseudo-vecteur »,
par opposition a un « vecteur-vrai » qui, comme le champ électrique, a les mémes
propriétés de symétrie que ses sources.

Le champ magnétostatique est un objet tridimensionnel qui a les propriétés
de symétrie d’un vecteur axial ou « pseudo-vecteur ».

Cela signifie que si les courants qui le créent subissent une symétrie plane par
rapport a un plan, alors B subit une antisymétrie par rapport au méme plan.
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Toute isométrie (transformation géo-
métrique qui laisse invariantes les
distances) peut se mettre sous la
forme d'un produit de n symétries
planes.

¢ Si n estimpair, l'isométrie est dite
négative.

e Si n est pair, l'isométrie est dite
positive.

Un vecteur polaire et un vecteur
axial se distinguent par la transfor-
mation qu’ils subissent lors d’une
isométrie négative.
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7. Champ magnétique

Champ au centre d’un systéme de deux bobines « opposées »

B;

NEE

/.
//
=

o N

Doc. 25 a.Champ magnétique de deux spires en oppo-
sition.

Calculer le champ magnétique créé au point O par deux
spires circulaires d’axe (0z) et de rayon R,
parcourues par deux courants opposés + 1 et — I et cen-
trées aux points d’abscisses 7 et —z(de part et d’autre
du point O .

Le document 25 représente les lignes de champ de cette
configuration dans un plan contenant I’axe (07) .

Doc.25b. Allure de B, créé par le systeme de cou-
rants.

Tout plan contenant I’axe (Oz) est plan-antimiroir IT" de
la distribution de courants. Au point O, le champ magné-
tique est dirigé selon e .

Le plan (xOy) est aussi un plan-antimiroir puisque les
courants parcourant les spires sont opposés, donc B (0)
est contenu dans ce plan.

En conséquence, le champ magnétique au point O est
nécessairement nul.

» Pour s’entrainer : ex. | et 2.

5 Flux du champ magnétique

5.1. Le flux magnétique est conservatif

5.1.1. Flux du champ attribué a un élément de courant

Envisageons un élément de courant dC =dC.e . Au point M de coordonnées
cylindriques (7; 6, z), le champ attribué a cet élément vaut :
oM _ 4dC  gin ¢ S
37 A4x 24 52 ’
joul* 12

tdC
¢

dB' (M) =

Les lignes de ce champ élémentaire sont des cercles centrés sur I’axe (Oz).
L’invariance par rotation autour de cet axe assure que dB .ey reste constant sur
un tel cercle.

Le tube de champ correspondant aux lignes s’appuyant sur une section droite d’aire
d Sy estun tore. Le flux du champ élémentaire dB est le méme a travers toutes les
sections de ce tore et vaut (dB .ep ) dSy.

lignes de champ de champ
circulaires de dB de section
créées par dC constante

Doc. 26. Lignes de champ traversant
une surface fermée.
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Application §

Observons sur le document 26 les lignes du champ dB traversant une surface fer-
mée S . Un tube torique de champ découpe sur S un nombre pair de sections (dans
le cas simple représenté ce nombre est deux). Les contributions des flux
« entrant dans § » et « sortant de S » sont identiques, au signe pres.

Le flux du champ magnétostatique dB a travers une surface fermée S est nul.

5.1.2. Généralisation

Pour une distribution de courants & , le champ magnétique B en M résulte de
la superposition de champs élémentaires dB , d’apres la loi de Biot et Savart.

La propriété précédente sera ainsi valable pour le champ total créé par la distribu-
tion. Nous pouvons donc affirmer que :

Le flux du champ magnétique sortant d’une surface fermée est nul.

Rappelons que cela implique que le flux du champ magnétique est le méme a travers
toute section d’un méme tube de champ (doc. 27) :

Le champ magnétique est a flux conservatif.

Nous verrons ultérieurement que cette propriété reste valable, que le régime étu-
dié soit indépendant du temps ou variable.

Remarque

Nous avons vu que les lignes du champ magnétique attribuées a un élément de courant
sont des cercles, elles sont donc fermées. Il en est de méme pour un fil rectiligne infini
(cf. exercice 5), ou pour une spire circulaire (cf- doc. 12 et 25). Nous pourrons admettre
la généralisation de cette propriété a des champs magnétiques créés par des distribu-
tions quelconques. Ce comportement différencie encore fondamentalement un champ
magnétostatique d’un champ électrostatique. Cette propriété est liée au fait que B
est toujours a flux conservatif, alors que E n’est a flux conservatif que dans les
régions vides de charges.

Doc. 27. Le flux de B a travers deux sur-
faces S | et S, s’appuyant sur un
méme tube de champ ne dépend pas du
choix de ces surfaces @ 1=, .
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Champ au voisinage de ’axe de révolution
d’une distribution de courants annulaires

Déterminer, a l’ordre un en r (distance a l’axe de révo-
lution (0z)), I'expression de la composante radiale du
champ magnétique au voisinage de I’axe de révolution
d’une distribution annulaire de courants.

Tout plan méridien contenant 1’axe de révolution (Oz)
est un plan d’antisymétrie de la distribution de courants
contenant le champ magnétique. Donc, sur I’axe (Oz)
le vecteur champ magnétique est colinéaire (Oz) :

B yxe(2) = Byxe(2) € .

Notons M le point de coordonnées cylindriques (r, 6, 7).
Le plan rnfzridien contenant le point M et I’axe (Oz)
contient B (M), donc By(r, 6,7) =0.

Comme la distribution posséde la symétrie de révolu-
tion autour de I’axe (Oz), il vient en outre :

B(r,0,2)=B.(r,z) €,+B,(r,2) ¢,.

Cela étant, considérons un cylindre d’axe (Oz), a bases
circulaires de rayon r dans les plans de cotes zetz+dz.

Ecrivons que le flux magnétique 2 travers ce cylindre

estnul :

nr2BZ(r, z+dz) - Jtrsz(r, Z)
+2nrdz(B,(r,z)+...)=0




7. Champ magnétique

dB.(r, 2) 12
d’ou: B.(r,z)=-L 222
ra)= -5 o )
Nous pourrons démontrer ultérieurement, a I’acide du Bxe(2)

théoréme d’ Ampere, qu’a 'extérieur de la distribution

de charges nous avons : B,(r, z) = B;(0, 2) = Bye(2) - 2+dz

En définitive :

~ L dBA0,2) z
B(r6.2)=B0.0)¢~ -7 —3 " ¢
(0] distribution
de courants
Doc. 28. » annulaires

5.2. Un exemple de canalisation du flux magnétique :
le solénoide

5.2.1. Champ de quelques spires
5.2.1.1. Champ d’une spire

Rappelons les résultats obtenus dans I’ Application 3.

Le champ magnétique d’une spire circulaire sur son axe est :

Au centre de la spire, ce champ est : B (0) = ug # e; .

Le document 29 représente des lignes du champ d’une spire circulaire d’axe (Oz)
dans un plan contenant cet axe.

5 A
\\¥§z = N

— <

r

| 7 —

Doc. 29. Lignes de champ magnétique d’une spire. Doc. 30. Champ sur I’axe d’une spire.

Par rotation de I’'une de ces lignes autour de I’axe de la spire, nous pouvons obtenir un
tube de champ magnétique dont les sections perpendiculaires a (Oz) sont circulaires.
Considérons ce tube en pensant a la conservation du flux magnétique le long de
celui-ci :
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* le tube est resserré lorsqu’il traverse la spire, qui sert de goulet d’étranglement
canalisant le flux magnétique qui est intense dans cette zone ;

* en s’éloignant de la spire, le tube s’évase rapidement, ce qui laisse prévoir une
diminution rapide de I'intensité du champ ;

IR? .
3a= “073 en fonction de z sur le docu-

2[1?2 + zz] 2

ment 30 confirme ces considérations qualitatives.

/
¢ letracé de B (axe) = ‘;—OR sin

5.2.1.2. Amélioration de la canalisation du flux

Pour augmenter le champ et étendre la zone de concentration de son flux, nous pouvons
songer a associer plusieurs spires de méme axe parcourues par des courants de
méme sens (nous avons vu précédemment (doc. 25) que deux spires en regard
parcourues par des courants opposés ne produisaient pas 1’effet souhaité).

Les documents 31 a 33 rendent compte de I’association de deux, cing puis dix spires
identiques et régulierement espacées.

5.2.2. Lignes de champ du solénoide

Poursuivant I’étude précédente, nous pouvons envisager un circuit obtenu par enrou-
lement régulier d’un fil conducteur sur un cylindre d’axe (Oz), les N tours de fil de

méme rayon R occupant une longueur totale € . En pratique, le nombre n = N

€
de tours de fil par unité de longueur est élevé, et nous pouvons 1’ assimiler 2 un ensemble
de spires d’axe (Oz) quasi jointives et de rayon R.

Le circuit obtenu est un solénoide (du grec solén : étui, tuyau) a section circulaire
et a une couche (nous pourrions envisager plusieurs épaisseurs d’enroulement).

Observons le document 34, qui présente quelques lignes de champ d’un solénoide
(@ N =21 spires tres proches) dans un plan contenant (0z) :

* le solénoide canalise les lignes de champ magnétique ;

* les lignes de champ s’écartent tellement vite des leur sortie du solénoide que nous
pouvons prévoir une atténuation tres rapide du champ a I’extérieur du solénoide, o
il doit étre négligeable devant le champ a I’intérieur du solénoide.

- B total

P 1SN
—

]
~ 1

—
e
(

Doc. 31a. Lignes de champ magnétique d’un ensemble de  Doc. 31b. Allure de B(z) dans le cas de deux spires parcou-
deux spires parcourues par des courants identiques. rues par des courants identiques.

/,///////

[

emm——
=
Z

B créé par chacune
des deux spires

EEREARE]
7
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/
i)
N

/ /

T

‘@\\

@

\

B(z)

1

e Biotal

B des diverses
spires

29’ ==
I

Doc. 32 a. Lignes de champ magnétique d’un ensemble de
cing spires parcourues par des courants identiques.

Doc. 32 b. Allure de B(z) dans le cas de cing spires parcou-
rues par des courants identiques.

W7

- ——
/.a——"‘—‘_’ -h_\
- ]

/ \

B(z)

7 T

- B total

Doc. 33 a. Lignes de champ magnétique d’un ensemble de
dix spires parcourues par des courants identiques.

Doc. 33 b. Allure de B(z) dans le cas de dix spires parcou-
rues par des courants identiques.

- [
At At A

bt

[]
2
]
)
)
)
)
)
3
)
)
)
)
)
)
.
)

}

=
* ~

B(z)

B total

Py
Z

\\

place
des
spires

Doc. 34 a. Lignes de champ magnétique d’un ensemble de
vingt et une spires régulierement réparties et parcourues par
des courants identiques.

Doc. 34 b. Allure de B(z) pour un solénoide constitué de vingt
et une spires régulierement réparties et parcourues par des
courants identiques.
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Awpplication Z

L’approximation de la nappe solénoidale distribution surfacique équivalente qui sera de la forme
de courant Jjs =jsey (encoordonnées cylindriques d’axe (Oz)).

Les spires étant quasi jointives et en nombre important
par unité de longueur, montrer que le solénoide peut étre
assimilé a une nappe cylindrique de courants annulaires
et de densité surfacique de courants jg & préciser.

Considérons un élément d z coupant normalement les
spires. Lintensité le traversant est d/ =ndz.[ pour la
schématisation discrete, et dI = jgdz pour la schéma-
tisation surfacique équivalente.

L’opération de nivelage proposée consiste donc a sub-

Nous considérons comme négligeable I’erreur commise en stituer au solénoide la nappe de courant de densité sur-
remplacant la distribution filiforme de courants par une facique j¢ =nleg

5.2.3. Champ sur I’axe du solénoide

Tout plan contenant I’axe du solénoide est un plan d’antisymétrie, donc sur 1’axe
le champ est de la forme B ,ce =B ¢ (2) €, . Le champ créé en un point M de
cote z s de I’axe par une spire de cote zp = 7,7 + R cotano parcourue par le

courant / est % sin® & (doc. 35 a).
., . . _ Rda
Celui cré€ par les spires de cote comprise entre zp et zp +dzp [dip=——"""-|,
sin“o

au nombre de ndzp , vaut :
,Uof’ll dZP -3 AuO nl AuO
= sin’ oo =— sinoada= ——d(coso
2R 2 2 ( )
Notant « et o les angles extrémes (compris entre 0 et 7) sous lesquels les
extrémités du solénoides sont vues depuis le point M (doc. 35 b), nous obtenons
le champ magnétique total sur I’axe du solénoide :

(cos ay—

Eaxe: Mon[ 7z -

cosoy .
e
2

Le tracé de la valeur du champ sur I’axe (z’z) en fonction de z (doc. 36) montre que
le champ magnétique est pratiquement uniforme a 1’intérieur du solénoide et
devient rapidement négligeable a I’extérieur.

5.2.4. Limite du solénoide infini

Pour un solénoide tres long, c’est-a-dire lorsque le rapport
lement infini), o tend vers w et o, tend vers 0 .

% est tres grand (idéa-

Le champ magnétique sur I’axe d’un solénoide infiniment long uniforme
et comportant n spires par lllﬁé de longueur vaut :
Bo=ponle; .

4
R
uniforme, égal a2 wonle;, en tout point a I'intérieur du solénoide, et il est nul a
I’extérieur.

Nous verrons au chapitre 8, que lorsque la limite tend vers o , le champ est

132

ESATA

JLEER/E

Doc. 35 a.

(e

T\ 0y -

Doc. 35 b.

Baxe (2)/Byxe (0)

1,0

0,8

0,4
0,2

| 0 1 2
Doc. 36. Solénoide aux extrémités d’abs-
cisses —zq etzg.
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A C Q F Ry

@ LOI DE BIOT ET SAVART

Toute distribution de courants peut s’analyser comme une distribution de courants filiformes dont la caractéristique
locale est I’élément de courant dC .

Nous postulons que I’expression de la contribution d’un élément de courant d C , situé au point P, au champ total
B (M) créé en M par une distribution de courants est donnée par la loi de Biot et Savart :

dB (M) =0 ac p r=v _Ho g PM_
R Ll L ]
Le champ résultant B (M) est la somme des contributions élémentaires avec dC =jd7 ou dC =jgdS ou
dC =1d{¢ selon les cas.
Le coefficient 1, dimensionné, vaut exactement p=4m.10~ H.m! (H désigne le henry, unité d’inductance).

L’unité de champ magnétique est le tesla (symbole : T).

@ SYMETRIE PLANE

Le champ magnétique B est perpendiculaire 4 un plan-miroir /7 en chacun de ses points.

Au point M’ symétrique d’un point M par rapport a un plan-miroir /7, le champ magnétique B’ est1’opposé du symé-
trique du champ B en M par rapport a ce plan.

@ ANTISYMETRIE PLANE

Le champ magnétique B est contenu dans un plan-antimiroir I7* en chacun de ses points.

Au point M’ symétrique du point M par rapport au plan-antimiroir /7%, le champ magnétique B’ est le symétrique
du champ B en M .

@ Le vecteur champ magnétostatique est un objet tridimensionnel ayant les propriétés de symétrie d’un vecteur axial
ou pseudo-vecteur.

® FLUX MAGNETIQUE

Le flux du champ magnétique sortant d’une surface fermée est nul.
Le champ magnétique est a flux conservatif.

@ SOLENOIDE

3

Le champ magnétique d’une spire circulaire sur son axe est : B (M) = g ﬁ sin® ar.e; .

Au centre de la spire, ce champ est : B (0) = g # e, .

Le champ magnétique sur 1’axe d’un solénoide infiniment long et comportant 7 spires par unité de longueur vaut :

Bw=ﬂ0n16?).
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Contrite rapide

 Définir un élément de courant dC . En quelle unité s’évalue-t-il ?
v Enoncer la loi de Biot et Savart et construire le vecteur champ élémentaire d B (M).

v/ Montrer, a I’aide d’un schéma simple, que le champ magnétique est perpendiculaire a un plan-miroir /7 en cha-
cun de ses points.

¢’ De méme, montrer, a I’aide d’un schéma simple, que le champ magnétique est contenu dans un plan anti-miroir
IT# en chacun de ses points.

v Justifier que le champ magnétique est un champ a flux conservatif.

v Retrouver I’expression du champ B (M) créé en un point de son axe par une spire circulaire de rayon R par-
courue par un courant /.

v Etablir I’expression du champ sur I’axe d’un solénoide infiniment long parcouru par un courant / et comportant
n spires par unité de longueur.

Du tac au tac (Vrai ou faux)

I. Leslignes de champ magnétique sontdeslignes 6. Le champ élémentaire dE(M) créé par un

fermées. élément de courant dC aune réalité physique:
Q Vrai Q Faux il est mesurable.
O Vrai U Faux

2. Le flux du champ magnétique a travers une sur-
face fermée n’est nul que dans les régions vides 7. Le coefficient 1 est sans dimension.

de courants. Q Vrai QO Faux
U Vrai U Faux
8. La loi de Biot et Savart est valable en régime
3. La translation, la rotation et I’antisymétrie par permanent comme en régime variable.

rapport a un plan sont des isométries qui lais- Q Vrai 4 Faux
sent invariante I’orientation d’un triédre.

. 9. Si un systéme X posséde un plan de symétrie
Q Vrai 0 Faux pun sy P “n p ymetr

IT alors, pour un champ de vecteurs polaires

4. Une symétrie par rapport a un plan change u(M) créépar 2, il vient:

Porientation d’un triédre. u(s(M)) =S(u(M))
U Vrai O Faux tandis que pour un champ de vecteurs axiaux
V(M) créé par cette méme distribution :
5. Le champ magnétique s’évalue en weber. V(S(M)) = - S(¥(M))
O Vrai O Faux O Vrai O Faux

» Solution, page 137.




Exercices

7. Champ magnétique

4

o
Ennotant S la symétrie par rapport a I7, rappelons que :

Produit vectoriel et symétrie plane

» pour un champ u#(M) de vecteurs polaires :
u(S(M)=SuM));
e pour un champ V(M) de vecteurs axiaux :
V(S(M) =-SV(M)) ;
e pour un champ défini par un produit vectoriel :
W(M) = wi(M) A wy(M) ot : wi(M) et wo(M)
sont des vecteurs polaires ou axiaux :
W (S(M)) = - S(W(M)).

1) Cela étant, considérons un systeme X possédant un plan
de symétrie [T et une loi physique, applicable a ce systeme,
de la forme ¢(M)=a(M) Ab(M) ot a@(M) estun champ de
vecteurs polaires et b(M) un champ de vecteurs axiaux.
Quelle est la nature (polaire ou axiale) du champ de vecteurs
¢(M) ? Citer un exemple de loi de ce type.

2) Quelle est la nature (polaire ou axiale) du champ de vec-
teurs c(M)si a(M) et b(M) sont deux champs de vecteurs
axiaux ?

% Trajectoire et force de Lorentz

Etant donné une distribution de courants présentant un plan
de symétrie I etune particules M (g, m) décrivant une tra-
jectoire L dans le champ magnétique créé par cette distribu-
tion. Montrer qu’il est possible d’observer une particule iden-
tique M’ décrivant la trajectoire symétrique L’ avec une
vitesse symétrique v(M’) = S(v(M)) en des points symé-
triques.

é Disque de Rowland

Ce physicien américain d’une habilité expérimentale hors du
commun fut le premier a démontrer qu’un courant électrique,
quel qu’il soit, crée un champ magnétique. Le principe trés
simplifié de I’expérience est le suivant.

Un disque métallique de rayon R, portant une charge élec-
trique répartie avec la densité surfacique uniforme o (sur I’en-
semble des deux faces) tourne a la vitesse angulaire constante
w autour de son axe (0z).

Calculer le champ magnétostatique créé par ces courants de
convection en un point M de I’axe (0z).

Données : 0 =5.10"°Cm~2:R=105cm; z=2cm;
o=061t.s" L

4

P

Une sphere de rayon R est recouverte d’un nombre élevé N de
spires parcourues dans le méme sens par un courant d’intensité
I . Calculer le champ magnétique créé par cette distribution de
courants au centre O de la sphere dans les deux cas suivants :

. Sphére recouverte de spires

1) les spires sont jointives ;

2) les plans des N spires sont équidistants (spires non jointives)
suivant (0z) .

5

Un circuit, fermé a I’infini, comprend trois parties rectilignes :
Al A1, AjAy et ApA’ys . Onnote I intensité de ce cir-
cuit.

Champ de courants rectilignes

135

© Hachette Livre - H Prépa | Electromagnétisme, I année, MPSIPCSPTS| ~La photocopie non autorisée est un délic



© Hachette Livre ~ H Prépa | Electromagnétisme, I"® année, MPSI-PCSI-PTS| - La photocopie non autorisée est un délic

136

Exercices

1) Déterminer le champ B(M)
créé par ce courant en un point
M situé a la distance r de la
portion AjA, et a 'intersec-
tion des demi-droites A’| A
et Ay A’y .

2) En déduire le champ
Bo(M) créé en M par un fil
rectiligne indéfini. Identifier
les lignes de champ de ce cou- Pt
rant.

3) On note L la longueur de

la portion AjA; et on consi-

dere un point M sur le plan médiateur de A;A, . A quelle
distance maximale rp,,, du fil doit se trouver M pour que
la norme du champ 1By (M)Il créé par le fil differe de moins
de 1 % de 11Bo (M)l 2

S

Montrer que le champ magnétique créé par un circuit filiforme
« angulaire » parcouru par un courant d’intensité / au point
M de I’axe (Ox) bissecteur est donné par :

uol Q) .

e tan (3) €,

dans le cas x > 0 (point M). Qu’obtient-on dans le cas x < 0
(point M’) ?

Courant angulaire

B (M)=—

-)7
I
Y L M
¢ 7z~ x
1 \\\\\
@e; Tl

z,.& Champ magnétique
créé par un courant filiforme

Calculer le champ magnétique créé au point O, centre du
rectangle ABCD, dans chacun des deux cas suivants. Chaque
demi-cercle a pour rayon a. On posera DA =BC = 21 .
L’intensité du courant est /.

§w. Composante axiale
du champ magnétique créé par une hélice

Soit une hélice de rayon R et de pas a, parcourue par un cou-
rant d’intensité / . On néglige les contributions des fils d’ame-
née du courant au champ magnétique en un point M .
Calculer la composante B, du champ magnétique en un point
de I’axe (Oz) de I’hélice. On désignera par & et « les
angles que font, avec I’axe (Oz), les vecteurs MP | et MP,,
Py et P, étant les deux points extrémités de I"hélice.
Commenter le résultat.

%,Bobines de Helmholtz

Deux bobines circulaires, de méme axe (Ox) et de méme rayon
R, comportent chacune N spires parcourues par un courant
d’intensité / de méme sens. Les centres O et O, des
bobines ont respectivement pour abscisses —a et a .

1) Calculer le champ créé par ces bobines en un point M situé
sur I’axe (Ox) et voisinde O.

2) Déterminer a pour que le champ soit le plus uniforme pos-
sible au voisinage de O sur I’axe (Ox).

® y @
R
oYl |c M
R R |02 !
2 2 I
& ®




7. Champ magnétique

Corrigés

Solution du tac au tac, p. 134. 5. Faux
l. Vrai 6. Faux
2. Faux 1. Faux
3. Vrai 8. Faux
4, Vrai 9. Vrai

;I,..s 1) En utilisant les propriétés caractéristiques des différents champs de
vecteurs, il vient :
T(S(0) =T (SMO) Ab(SD) =S@AD) A (- S(b (M)
=~ [S@M) A\ Sb O] =- [- S@M) A b (M)
=8(C(M)).
Le vecteur ¢ (M) est un vecteur polaire.

La force de Laplace dF(M)=dCM) AB M) appliquée a un élément de courant
dC (M) (vecteur polaire) placé dans un champ magnétique B(M) (vecteur axial) est
un vecteur polaire.

2) En reprenant le méme principe de démonstration, nous pouvons écrire :
C(SON) =T (SO A B (SM) = - S@MN A =SB M)
=8@(M) A Sb (M) =~ S@M) A b M)
==SC(n)).

Le vecteur ¢ (M) est alors un vecteur axial.

AN

r -

L -
2" V(M)

B(M) V(M)

Soit L’ la trajectoire symétrique de L par rapport au plan (II), plan de symétrie des
courants créant B . Pour que L’ soit décrite, il faut que F M= (f (M), c’est-
a-dire que F soit un vecteur polaire. Or le vecteur vitesse est un vecteur polaire et
B un vecteur axial. L'intervention du produit vectoriel (cf. exercice 1) implique que
F est bien un vecteur polaire.

La trajectoire L’ peut donc étre décrite par une particule de méme charge.

et Le disque tournant est une superposition continue de spires. Une spire de

rayon r etde largeur dr est, du fait de la rotation, le siége d’un courant dintensité
dl =jgdr= o (rw)dr.Elle crée en M le champ magnétostatique :

—  uy(oordr
dB = “’(27) sin 0.2,
v z

Sachant que r=ztan 6, soit dr = d 6, nous obtenons le champ B (M)

i

cos20

par intégration de 6 entre 0 et 0y (COS Omax = % ) :
VR + 22

_ 00 (1 — onc?
B = @omzf (= H)Sin 6do ¢
) z

2 cos*f
fo 1 _
= & 00z +cos B . —2
2 ! oS Hma\ max €;.
g R Ho | v 2
Soit : BM) = = 00— VR +12_1) e

VRE+22

La valeur numérique de la norme de ce champ est B =8,5.10 11 T . Cette valeur
est tres faible et ce champ est noyé dans la composante selon (0z) du champ magnétique
terrestre (de I"ordre de quelques 10~ 3 T). Rowland est néanmoins parvenu, grice a
un jeu d’aiguilles aimantées (en montage astatique), a prouver I'existence de ce champ.

é;,.p- 1) Spires jointives

Le nombre de spires par unité de longueur est donné par n= % - Le nombre de
spires étant élevé, nous sommes en présence d'une répartition surfacique uniforme de
courants jg =nleg.
L'ensemble des plans contenant (Oz) sont des plans d’antisymétrie des courants,
donc B (0) est porté par (0z) .
— T uglnR
5= [ L
o 2Rsin 0
car chaque « spire » vue sous un angle df est parcourue par un courant jgRdf .
ugNl
@z
4R

sin’ 0.d6. e,

B(0)=

2) Spires équidistantes (non jointives)
Le nombre de spires situées entre deux plans de cotes z et z +dz est donné par

n'dz = Tﬂ dz. La densité surfacique de courants équivalente est donc égale a

js =nlsin ey, car joRAO=n'l |dz| avec z=Rcos 0, soit |dz| =Rsin 6d6.

Un calcul identique au précédent nous donne :

B0 - ® 'l sin OR
o 2Rsinf

Nl
e, .

sin’ 046.¢7, soit B (0) = 5

5

— 1) Remarquons que chacune des portions A’ A; et AyA'y, créenten M un

champ nul, puisque leurs éléments de courant dC(P) sont colinéaires a PM.Le champ
en M estdonc dii uniquementala portion AjA;. Le plan défini parle courant AjA et
Je point M estun plan de symétrie du courant, donc B(M) est orthogonal a ce plan. Ce
champ, colinéaire a ¢, se calcule 2 I'aide de la loi de Biot et Savart :

= _@IdﬁAE’FM

dB0n= o
avec :
OP =rtan¢; donc dP = 02 doe;, PM= g €0 & A épy =c0s0Zy.
cos* :
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Corriges

Z
A2
P
;’7 ® eo
o
o - M
e
A7
s . . o f h UI
Apres simplification, il vient: dB(M) = W ada
d’ou finalement :
= ol fwz _uyl _d =
BM)= dnr ¢y . cosada-hr (sin &y -sinoty) €y
2) Dans le cas d’un fil rectiligne indéfini, 05 =- % et o= % , ilen résulte que :
Ho]
B(M)= €y .

Le champ n’est pas défini sur le courant et 11 S annule a l'infini dans une direction per-
pendiculaire au courant. Les lignes de champ de ce courant sont des cercles dont I'axe est
le courant rectiligne.

3) En considérant que : ¢ =- @ = @, on obtient immédiatement :

IL
— ul . D) _
Bon= 2 snay=B.00 4
Vi +r
La distance maximale cherchée est déterminée par :
L
——— =099
\/ ! ) + m HES
dou: o= %L: 11L102L
2
- Le plan contenant les deux fils et le ]
point M est un plan de symétrie des courants, \\
donc I?(M )est perpendiculairea ce plan: |, \\ Qk
B(M)=B€,.
Le champ I?(M ) créé par un segment por- o K s
tant un courant / est donné par : A 17
Soit )= 2% - snay-sinay) | e
oit = ¢ (Smnop—sine) | T T .
4ma g B ( M)
(cf- exercice S).

138

Les champs magnétiques créés par le fil 1 et le fil 2 sont identiques.

Sachant que a=xsin ¢, o] = X —gpet o= 2. nous obtenons :

2 2
— gl l-cosp
A= 24m< sin ¢ &
= il o7
tan(2) €.
Pour le calcul de 1?(M'),n0usutilis0ns ) :<% —<p>, o =- % et a=—xsin g,
L= ol 1+cosqp ol
soit: B(M')= 24th T (x<0)= e @ e(x<0).
2
z
Z
B(0)
D
0 [

1) Les plans (x0z) et (y02) (contenant le point 0) sont des plans d’antisyméirie des
courants, donc B (0) est suivant leur intersection : B (0) =Bee; .
4

2
VIR +q?

. B(BC) (DA) —OI 2sin e, , avec sin 6=

)

T T N v
¢..B(AB) = ¢,.B (CD) et B(AB).c; {4:; fAB o | &

Sachant que :
oP =—acospe, — ey —asinge;,

dP =(asin pe;—acospe,)do et

OP NP =(al cos pe; Y
+a25;+alsin<p6)d¢,
X
nous obtenons :
AB) e #J 3\ 0
\‘” (a +€2)§f
Soit B(O #1 ol e.

2) Utilisons le document 2 de Iénoncé.

|
* Nous avons toujours B(BC) B(DA) 2 e

o
. A tout point P de AB, nous pouvons associer un point P’ de CD tel que
OP =—0P et dP =—dP’ ,d’ot B (AB)= B(CD). _
Le plan (yOz) est un plan d’antlsymetrle de ces courants suivant AB et CD, donc B
est dans ce plan.



7. Champ magnétique

gl (T alsingdp u(]l oMy
B (4B) = 4nf PRI e i
(2 +a2)2 (+a2)2
ol ougl 2 —
:ﬁ a€7§2 +4?[ a ey,
(02+f“)2 ({2+a2)§

3

Le vecteur induction magnétique total est donc égal a :
@ >
el

ol f f
(0) 0 { 4 at .2
((7+a)2 J

) 3
aN 244 (a2 +6%)2
Pour € =0, nous retrouvons le vecteur induction magnétique d’une spire en son centre.

8

-
P sur I’hélice de la maniére suivante :

5
@,

+

<

I\)‘a

Soit une hélice finie de pas a sur un cylindre de rayon R. Repérons un point

p= zM+ (zp—zM310 0).

Le vecteur B (M) est donné par :
= P2 ol dP 2 PM
BM :f — )
e
avec MP =R¢, +(zp—zy) €3
Soit dP =Rdfey+ L dbe;
2

e dP AP =(- R0 G Ba G Rag) s,
2 2
La projection de B (M) sur (Oz) est donnée par :
o fP2 R%f
BM)e,= 5| —= -
M)-e:= 4 P PM

Appelons ¢ I'angle (E , MP ) compris
dans le domaine [0 ; ). Nous avons :

Ip—IM= ana

2 2R 1
€0=7 =W = "0 g’
] 2nR da
soit df=— =——— -
4 sin’a
Ce qui nous donne :
— R )
B (M).c, = 4‘; f 26? d(cos @)
ol

= Z(cosaz—cosal) .

Sachant que % peut étre assimilé a un nombre de spire par unité de longueur

nl

. Hy .
suivant (Oz) , nous obtenons B, = N (cos ary —cos /1) , expression du champ

créé par une nappe solénoidale en un point de I'axe. Mais pour I'hélice, By et By ne
sont pas nuls.

2,.. 1) Le champ créé par une bobine en un point M de son axe est de la forme

_ Mgl
B(M) = Bysid g, ou By= %

sous lequel on voit le rayon de la bobine du point . Pour les deux bobines le champ,

est le champ en son centre et ¢ est I'angle

enun point M d’abscisse x, sécrit :

Beo=8, |[—& e R )a
(R +@+x2] ((R2+(@-0P2
R3
Notons f(x)= ——=——— il vient:

(R +(a+ \) )2
B(x) = By [f(x) +f-x)] &5
Faisons un développement limité a I’ ordre trois de I’expression précédente pour
X
a<<l:
¢ 3

F0) =10+ Ox+£"0 % AU
JE)=fO)-f 0)x+( ) 5 f’”O) %3
d’ou:

B =By [2/(0) +f"0) ] ¢;.
2) Le champ sera le plus uniforme possible au voisinage de I"origine 0, si f”(0) =0,
Or:
)=

5 R0+ ) R+ @@+ P

risel et s
d’ou: 5 7
10 =-3¢ [(R2 +a2] 2-5a4R* + (,2)‘5]

;
=-3R? (R +a¥ 2 (R - 4a?)

Il faudra donc prendre a = §

les deux bobines est égale au rayon de chacune d’elle.
Sur les schémas ci-apres, sont respectivement représentées les variations de B(x) le

pour réaliser la condition imposée : la distance entre

long de I'axe (Ox),, les lignes de champ créées par les deux bobines ainsi que les varia-
tions de la norme de ce champ le long de I'axe (Oy) pour y compris entre — R et R.
On constatera que le champ est particulierement uniforme dans Iespace situé entre
les bobines quand elles sont en position de Helmholtz.

B R TR

B total
sur l'axe

n.0

B spire 1
B spire 2

0;i o0 0,
1.0
2.0
3.0
4.0
X x10
Sl R i -9-2 0.1 010 Q4. 8:2,,...0:3, .94
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Corriges

§<

e

2 spires
en configuration
« HELMHOLTZ »

>

Vi

0,




Le théoreme
d’Ampeére

sfouague
i toris

André-Marie Ampere (1775-1836), né a Lyon,
professeur & I’Ecole polytechnique,

physicien et mathématicien,

a établi les propriétés du champ magnétique
en relation avec les sources de courant.

Citons I’appréciation (avisée !)

de James Clerk Maxwell sur A.-M. Ampere :
« Le tout, théorie et expérience,

semble avoir jailli en pleine vigueur

et completement armé du cerveau

du Newton de I’électricité.

La forme est parfaite, la rigueur inattaquable,
le tout se résume en une formule

d’ou peuvent se déduire tous les phénomenes
et qui devra rester la formule fondamentale
de ’électrodynamique. »

OBIECTIFS

B Théoreme d’ Ampere.
M Utilisation.

PREREQUls

B Champ magnétique.
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8. Le théoreme d’Ampére
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I Circulation du champ d’un fil

Sur les cartes de champ magnétique tracées au chapitre 7, nous avons pu remarquer
que les lignes de champ magnétique sont fermées. Ceci constitue une différence
fondamentale avec le champ électrostatique : la circulation du champ magnétique
sur un contour n’est pas nécessairement nulle.

Nous utiliserons un cas élémentaire pour mettre en évidence cette propriété.

I.1. Champ créé par un fil rectiligne indéfini

Ce type de circuit modélise un circuit fermé comportant une portion rectiligne de
longueur L grande devant sa distance r au point M o est évalué le champ B (M).
Notons (r, 6, 7) les coordonnées cylindriques du point M. L’axe (Oz) sera pris
confondu avec le fil et son orientation sera celle du courant d’intensité I (doc. 1).
Tout plan contenant le fil est un plan de symétrie, donc le champ est orthoradial :
B(M)=Bgy(r, 6,2) ep.

L’axe (Oz) étant un axe de révolution, le champ ne dépend pas de la coordonnée 6
: F(M) =Bg(r,z) ep .

Enfin, le systéme étant invariant dans toute translation parallele a (Oz), le champ
ne dépend pas davantage de la coordonnée z : B (M) = By(r) ep .

L’élément de courant dC, situé en P, crée le champ élémentaire :

uy dC A 2py,

dB =
4n  pp
De OF =(z+rtana) e, il vient dC =1dP =1 4% &,
cos2a

. _ r .

Par ailleurs, PM = cosa donc :
= _ ol daé A Zpy ugl cos ada &
V=g 7 “ax 7 0

Le champ créé par le fil indéfini s’établit a :
I

5oy ! - 2 Aul -
BM) = % eefzn cos ada = 23(35;" ¢
2

et les lignes de champ sont des cercles d’axe (Oz).

|.2. Circulation élémentaire du champ

En coordonnées cylindriques, le déplacement élémentaire d’un point M s’écrit :
dM =dr.¢, +rdf.c g+ dz.c,.
La circulation élémentaire du champ magnétique du fil est donc :
dC=B.dM = po L d6.
o n

1.3. Circulation du champ sur un contour enlacant le fil

Le document 2 représente un contour I enlagant le fil dans le sens direct ; ce contour
est donc orienté. Lorsque le point M (7, 6, z) décrit le contour I", ’angle 6 varie
de 0 a 2m par valeurs croissantes. La circulation du champ sur ce contour se
déduit immédiatement du résultat précédent :

C[‘=§ B.dM = p,l.
r

Si le contour enlace le fil dans le sens indirect, la circulation vaut Cr= — ol .

X
Doc. 1. Champ magnétique créé par
I’élément de courant dC du fil infini.

Z
I
|
1
0 I
\\\ i y
0 \\f\\ } 26
X —-
€r

Doc. 2. Contour I enlacant un fil dans
le sens direct. (Remarquons que ce
contour est orienté.)



I.4. Circulation du champ sur un contour n’enlagant
pas le fil

Si le contour n’enlace pas le fil (doc. 3), la variation de I’angle 6 lorsque M décrit
le contour I"est globalement nulle, donc :

Cp=j( B.dM =0.
r

I.5. Lien avec le courant électrique traversant le contour

Sur le document 4 est représentée une surface S s’appuyant sur le contour I et
orientée par celui-ci : un tire-bouchon tournant dans le sens choisi pour I tra-
verse la surface S dans le sens de son vecteur normal unitaire 7 .

« Si le contour enlace une fois le fil dans le sens direct (doc. 4), le courant [ traverse
la surface S, selon le sens de . Dans ce cas, Cr= uol .

¢ Si le contour enlace une fois le fil dans le sens indirect, le méme courant / tra-
verse la surface S, selon le sens de —n . Dans ce cas, Cr= — uol=Uy(-1).

* Si le contour n’enlace pas le fil, le courant a travers la surface S est nul, que la
surface S ait une forme simple (doc. 5) ou un peu plus compliquée (doc. 6). Dans
ce dernier cas, le courant traverse deux fois S, mais dans des sens opposés.

Nous pouvons nous demander si ces résultats sont vrais pour tous les choix de
surface S s’appuyant sur le contour I". Considérons donc deux surfaces, telles que
S et Sy, s’appuyant sur I et orientées par celui-ci (doc. 7).

En régime indépendant du temps, I’intensité I du courant ala méme valeur en tout
point du fil ; les courants qui traversent S; et S, sont donc égaux.

« En conclusion, nous admettrons que la circulation du champ magnétique B (M)
créé par un courant filiforme de forme quelconque, le long d’un contour I" peut
s’écrire de facon générale :

Cr= jé B(M).dM = eyl .
I

€ =1, silecourant I traverse une surface S orientée par I dans le sens du vec-
teur normal 7 ;

€ =—1, silecourant [ traverse S danslesensde —n ;

e =0, si aucun courant ne traverse S .

2 Théoréme d’Ampeére

Nous admettons la généralisation des résultats précédents dans le cas d’une distribu-
tion de courants & dont le vecteur j est a flux conservatif.

Dans ce contexte, le théoreme d’Ampére (admis) s’énonce ainsi :

La circulation du champ magnétostatique B créé par un ensemble de cou-
rants sur un contour I orienté, est égale a la somme des courants enlacés
par I'multipliée par pu : -

Cp=j£FB dAM = uﬂzk‘, 9 A

& =1,si I, traverse S orientée par I" dans le sens de .
& =-1, si Iy traverse S dans le sens de - 7.
& =0, si I; ne traverse pas S.

8. Le théoreme d’Ampére

Doc. 4. Le courant I traverse la sur-
face S s’appuyant sur le contour I’
dans le sens de n .

s

r

Doc. 5. Le courant I ne traverse pas la
surface S s’appuyant sur le contour I'.

Doc. 6.

r

Doc.7. Courant traversant les deux
surfaces s’appuyant sur I".
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Par exemple, sur le document 8, nous avons :
Cr=pmoy —Iy +21I3).
La circulation ne dépend pas de 1 .
De facon plus générale, nous pouvons aussi écrire Cr= f L j.mdS, lerésul-

tat ne dépendant pas du choix de la surface S s’appuyant sur la courbe de circulation I".

Remarques

o [l faut garder a I'esprit que le théoreme d’Ampere n’est rigoureusement valable que
pour les régimes indépendants du temps, donc en magnétostatique. En particulier; dans
des cas ot les lignes de courant sont interrompues, donnant lieu a des accumulations de
charges, nous ne pouvons pas [’appliquer. Nous pouvons en revanche I’employer
dans I'approximation des régimes quasi permanents lorsque le vecteur j est d flux
conservatif. L’étude plus complete de cette difficulté sera faite en seconde année.

* Nous excluons les cas exotiques tels que le contour I rencontrant un circuit
filiforme, ou encore un contour pour lequel il est impossible de trouver simplement
une surface s’appuyant dessus.

3 Conséquences du théoréme d’Ampére

Ayant postulé la loi de Biot et Savart, nous avons montré que le champ magnéto-
statique est :

* un champ dont le flux a travers toute surface fermée est nul ;

 un champ lié a ses sources, les courants, par le théoreme d’ Ampere.

Comme pour le champ électrostatique, nous résumerons ces propriétés en seconde
année sous la forme de lois locales.

Les outils dont nous disposons nous permettent cependant d’aborder 1’étude com-
plete du champ : évolution locale et discontinuités du champ, calcul de celui-ci. ..

Le théoreme d’Ampere et la conservation du flux magnétique sont deux
propriétés qui permettent I’étude complete du champ magnétostatique.

Application 1

Doc. 8. La circulation de B sur le
contour I ne dépend que de 1y, I et
I3.

Champ uniforme montre immédiatement que By A¢ =B, A( . Par suite
Etablir que, si dans une région vide de courants, les B = cte dans cette région.
lignes de champ sont des droites paralléles, alors le
champ B est uniforme. B, Al
Les tubes de courants élémentaires étant des cylindres 7
de section droite constante (B .dS, =cte) implique 2
B = cte lelong d’une ligne de champ. ds, G_> ds, O—>

L’application du théoreme d’ Ampere a un contour rec-
tangulaire comprenant deux lignes de champ (doc. 9) Doc. 9.
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Calcul d’un champ magnétique
a Paide du théoréme d’Ampére

4.1. Principe du calcul

Comme le théoreme de Gauss, le théoreme d’ Ampere est de formulation remar-
quablement simple. Pour une distribution de courants connue, nous pourrons calculer
la circulation du champ sur des contours convenablement choisis pour en déduire
I’expression du champ. II faut que le lien entre la circulation et le champ soit élé-
mentaire : champ magnétique d’expression déja trés simplifiée, contour de géo-
métrie simple.

Le théoreme d’Ampére permet une détermination rapide du champ
magnétostatique pour des distributions de courants de symétries élevées.
Apres détermination de la forme du champ a I’aide de considérations de
symétrie, son application a un confour orienté de géométrie adaptée aux symé-
tries du probleme permet de déterminer ’amplitude du champ.

Le principe du calcul correspondra a la démarche exposée, ci-dessous, dans le cas
de distributions de courants a symétries élevées.

4.1.1. Premiére étape : considérations de symétries

11 faut obtenir, a I’aide des symétries de la distribution, la forme du champ magné-
tique :

* utilisation de plans de symétrie ou d’antisymétrie pour déterminer sa direction ;
* utilisation d’invariance par rotation ou translation pour réduire la dépendance de
ses composantes vis-a-vis des coordonnées... (il faut penser a utiliser un systeéme
de coordonnées adapté a la symétrie du probleme).

4.1.2. Deuxiéme étape : choix du « contour d’Ampeére »

La forme obtenue pour le champ détermine le choix de la courbe I"de circulation,
dite « contour d’ Ampere », afin d’obtenir sans peine la circulation du champ magné-
tique.

4.1.3. Troisieme étape : application du théoréme d’Ampeére

Elle acheve la détermination du champ magnétique.

4.2. Distribution a géométrie plane : nappe plane infinie

Nous nous intéressons a la détermination du champ créé par une nappe de courant
infinie dans le plan (xOy), avec jg =js€, (doc. 10).

Une telle nappe de courants résulte de la modélisation surfacique d’un ensemble
de courants filiformes, rectilignes, infinis, jointifs, d’intensité I, disposés paralle-
lement a I’axe (Ox). Notons n le nombre de fils coupant, par unité de longueur,
I’axe (Oy),ilvient: jg=nl.

4.2.1. Considérations de symétrie
La distribution est invariante par symétrie par rapport a tout plan parallele a (xOz),
donc B (x,,z) =B (x, y, 2) €), . L'invariance du probleme par translation paralle-
lement a (Ox) ou bien (Oy) nous permet la simplification supplémentaire :

B (xy2=B@e¢.

8. Le théoreme d’Ampére

Doc. 10. Nappe plane infinie.
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Application 2

Notons aussi que le plan (xOy) est un plan de symétrie de la distribution.
Au point M’ symétrique du point M par rapport i ce plan, le champ B’ est
I’opposé du symétrique du champ B en M : la fonction B(z) est impaire.

4.2.2. Choix du « contour d’Ampére »

Un contour permettant un calcul aisé de la circulation doit posséder des cotés paral-
Ieles au champ, & z =cte, le caractere impair de B(z) nous conduisant naturelle-
ment au choix du contour du document 10 : ce contour est constitué d’un rectangle
de hauteur 2z suivant (Oz), et de largeur L suivant (Oy) : I’orientation du contour
apparait en noir sur le schéma. La circulation du champ sur ce contour orienté est :

C=LB(z)+(—L)B(—7)=2LB(2) (avec z>0).

4.2.3. Champ magnétique

En appliquant le théoréme d’ Ampere a ce contour, nous avons (la normale a la sur-
face est orientée suivant —e,) :

2LB(z) =— mojsL.
Finalement le champ de la nappe est :

»_ _ WoJs
B 2

signe (z) €y .

Remarques
* En traversant la nappe de courant dans le sens de e, le champ magnétique pré-
sente la discontinuité B (0,)—B (0_) = pjs/\e,.
* La modélisation surfacique a considérablement simplifié le probleme.
Rigoureusement, pour un ensemble de courants filiformes identiques orientés selon
(Oy) et distants de a, les considérations de symétrie et d’invariance se limitent a
la périodicité du champ :

B(xy,2)=B(x+ka,y,z).
1l est alors impossible d’utiliser le théoreme d’Ampere pour calculer le champ.

Une étude numérique montre que, 1’écart relatif entre les deux calculs est inférieur
a 1073 dés que z est supérieur a 1,5a.

Champ créé par nappe plane

1) Déterminer le champ créé par une couche plane infi-
nie, contenue entre les plans :
e e
=— s etz=+t,
S T )
de courant volumique uniforme j = je,.

2) Retrouver le cas de la nappe plane comme cas limite
de celui-ci.

Doc. 11.

1) Les propriétés de symétrie utilisées pour le cas de la
nappe sont encore valables, donc :

B (x, 32 =B(2) €y, avec B(—2) =~ B(2).

L application du théoreme d’ Ampere au méme type de
contour du § 4.2.2. nous donne :

ecasl, 0<z< £ : 2LB(x)=—2moLjz;

2
e cas2, z> % e 2LB(z) = — poLje.
Nous en déduisons :
°siOS|z|s% :B=—pojz €y ;
i € . _ _ e _
.51§s|z| : B= (,LL()] 5)51gne(z)ey.

2) Alalimite etend vers 0, avec jg =je maintenu constant,
nous retrouvons le cas de la nappe plane infinie.
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4.3. Distribution de courants axisymétrique : le tore

Un contour C est dessiné dans un plan contenant 1’axe (Oz). Sa rotation compléte
autour de I’axe (Oz) engendre un tore (doc. 12). Si C est un cercle, le tore obtenu est a
section circulaire ; si C est un rectangle, le tore obtenu est a section rectangulaire.

Nous étudions le champ magnétique engendré par N spires enroulées sur un tore
et parcourues par un courant d’intensité / (cette situation s’apparente aux circuits
primaire et secondaire de certains transformateurs).

Pour un bobinage assez serré (spires quasi jointives), cette distribution filiforme
peut étre assimilée a une distribution surfacique de courants : c’est une opération
de nivelage permettant alors d’admettre la symétrie de rotation autour de I’axe (Oz).

4.3.1. Considérations de symétrie

Tout plan contenant I’axe (Oz) est un plan de symétrie et I’amplitude du champ
magnétique, orthoradial, ne dépend, en coordonnées cylindriques 7, 0 et z, que des
variables ret z :

F =B (I’, Z) e 0-

4.3.2. Choix du « contour d’Ampeére »
Sur les lignes de champ, cercles d’axe (0z), la norme du champ reste constante.

Sur un contour d’ Ampere I"coincidant avec une ligne de champ, la circulation du
champ vaut 2xrB(r, z) , quand I est parcouru dans le sens du champ.

4.3.3. Champ magnétique

Appliquons maintenant le théoreme d’ Ampere.

Pour un contour I'} a I'intérieur du tore (doc. 14), la somme des courants enlacés
est NI . Le champ en un point a I'intérieur du tore est donc :

) Yo NI
Bint= %5, 7 €0-

Pour un contour I a I’extérieur du tore, la somme des courants enlacés est nulle
(il est toujours possible de trouver une surface s’appuyant sur I, sans point com-
mun avec le tore), et le champ extérieur I’est aussi :

B ext — 0.
Ces résultats montrent que le tore canalise les lignes de champ magnétique.

Remarque
La dépendance de B vis-a-vis de z est masquée mais effective : si z et r sont tels que
le point M est intérieur au tore, B est non nul ; il est nul si M est extérieur au tore.

4.4. Distribution a géométrie cylindrique de courants
paralléles : cylindre infini de densité de courants uniforme

Dans ce modele d’extension infinie, un courant d’intensité résultante [ circule
parallelement a (Oz) dans un cylindre d’axe (Oz), a section circulaire de rayon R,
avec une densité volumique uniforme j =je, (doc. 15).

Ce courant cylindrique résulte de la modélisation volumique d’un ensemble de cou-
rants filiformes, rectilignes, infinis, jointifs, paralleles a (Oz) et d’intensité /. En
notant n le nombre de fils coupant une surface unité dans le plan (xOy), il vient
Jj=n1.Ladistribution volumique, en apportant des symétries que ne possede pas
la distribution discrete de courants filiformes, rend plus facile I’étude du champ
créé.

8. Le théoreme d’Ampére

Doc. 12. Tore a section quelconque.

Y B
<
e
1
0 0
®Z X

(un

Doc. 13. Mise en évidence d’un plan de
symétrie des courants.

Doc. 14. Choix du contour d’Ampére.

Z

e
=
&y

Doc. 15. Cylindre infini, avec j uni-
forme.

147

© Hachette Livre ~ H Prépa | Electromagnétisme, I année, MPSPCSI-PTS| ~La photocopie non autorisée est un délic



8. Le théoreme d’Ampére

© Hachette Livre ~ H Prépa | Electromagnétisme, I"® année, MPS-PCSI-PTS| - La photocopie non autorisée est un délic

148

4.4.1. Considérations de symétrie

Tout plan contenant 1’axe (Oz) étant un plan de symétrie, B est orthoradial :
B =B(r, 6, 7)€y (en coordonnées cylindriques d’axe (0z)).

La distribution de courants présente les symétries de translation selon (Oz) et de
rotation autour de (Oz) : B ne dépend donc que de la coordonnée r: B =B(r)ey.

4.4.2. Choix du « contour d’Ampére »

Les lignes de champ sont donc des cercles centrés sur (Oz) et la norme de B est
la mé&me en tout point d’une ligne de champ. Nous choisirons donc un contour
d’Ampere I" confondu avec une ligne de champ, cercle d’axe (Oz) et de rayon r .
Bien remarquer son orientation sur le schéma (doc. 16).

4.4.3. Champ magnétique

En parcourant ainsi, dans le sens du champ et en distinguant le cas ot le cercle est
a I’intérieur du cylindre de celui ou il entoure ce dernier, nous obtenons :

2
ecasl, 0<r<R: 2an(r)=;L0jnr2:,u,01 % :

e cas2, r>R: 2arB(r) = wojnR? = wol .
1l vient donc :
. = S\ B = SR\
* Bine=(Hoj 5 |€g; *Bext =m0/ 45— |€0-
2 2r
Le champ de cette distribution volumique finie est continu en r =R (doc. 17).

A Iextérieur du cylindre, le champ s’identifie 2 celui créé par un fil rectiligne infini
placé suivant I’axe (Oz) et parcouru par le courant / = jm R2 .

4.5. Distribution a géométrie cylindrique de courants
annulaires : le solénoide infini
Considérons un solénoide « infini » de section circulaire, parcouru par un courant
I et possédant n spires par unité de longueur.
Au chapitre 7, nous avons montré que le champ vaut :
B axe = ponle;
sur I’axe du solénoide. Une étude qualitative des lignes de champ nous avait per-

mis de remarquer que le champ décroissait trés vite a I’extérieur d’un solénoide de
longueur finie.

Nous nous proposons de déterminer de facon plus complete le champ créé par un
solénoide infini en tout point de I’espace a 1’aide du théoreme d’ Ampere.

4.5.1. Considérations de symétrie

Le solénoide est assimilé a un assemblage de spires jointives, contenues dans des

plans perpendiculaires a (Oz) (doc. 18).

Tout plan normal a (Oz) est un plan de symétrie de la distribution de courants, donc :
B=B(62e,.

L'invariance de la distribution par translation parallelement a (Oz), et par rotation

autour de (Oz) permet de simplifier I’expression du champ : B =B (r)e; .

4.5.2. Choix du « contour d’Ampeére »

Pour une telle géométrie, le choix d’un contour rectangulaire, possédant deux cotés
paralleles a (Oz), s’impose (doc. 18). Bien remarquer (a nouveau !) les orientations
de ces contours.

contour
d'Ampere

Doc. 16. Choix du contour I (contour
d’Ampere).

MoJ S b

|
|
|
|
|
}
O R r

Doc. 17. Evolution de B(r).

11
D, C,

B G0 0C00000200000C000
WDy Gy E
\ A1 By ) B E

Doc. 18. Solénoide infini.
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8. Le théoreme d’Ampére

4.5.3. Champ magnétique

Pour un contour de type A; By C; D al’intérieur du solénoide, non traversé par
le bobinage du solénoide, le théoréme d’ Ampere donne :

(A1 B}) Baxe — (A1 By) B(r) =0 tantque r<R.

Par conséquent, le champ a I'intérieur du solénoide infini est uniforme, égal a sa valeur
sur I’axe :

Eint :Eaxe =uonle ;.

Pour un contour de type A, By C; Dy , traversé par n Ay B, spires du solénoide,
le théoreme d’ Ampere donne (Ap By) Baxe —(Ap By) B(r) = o (nA2By) I.
Le champ a I’extérieur du solénoide infini est ainsi nul :

Bex=0.

Remarques

* Un solénoide infini peut étre considéré comme un tore de rayon moyen tendant

vers 'infini, en remplacant N par n dans ’expression du champ.

2mr

e En utilisant la modélisation du solénoide par une nappe solénoidale de courant
surfacique js=nl ey, nous constatons que le champ magnétostatique subit, a la
traversée de la surface du solénoide dans le sens ¢ ., la discontinuité :

B oxt—Bine = —ponle, = IU*OIS‘ N €.

Application

Champ d’un solénoide infini * B est uniforme a I’extérieur. Donc B ey =B  =0.
a section quelconque * B(Cy) = ppn I entout point C; situé a I'intérieur.
L’expression du champ créé par un solénoide infini est

Reprendre cette étude pour un solénoide infini compor- o X
donc indépendante de la forme des spires :

tant n spires jointives par unité de longueur, identique - °° -
a celui du document 18, a ceci prés que les spires sont Binn=ppnle, et Bey=0.
planes, mais de forme quelconque, non nécessairement
circulaire. On admettra que le champ magnétique est
nul a tres grande distance de I’axe, pour r — .

Utilisons les coodonnées polaires, bien que 1’axe (Oz) ne
soit plus axe de symétrie. Le champ est, a priori, de la
forme B =B(r, 0) ¢,.

Utilisons les contours d’Ampere A|B{C|D; et
ArByCrD; (doc. 19). Attention aux orientations !

Leurs cotés « utiles » vérifient r=cte et 6= cte.

Du théoréme d’ Ampere, nous déduisons que : Doc. 19. Solénoide infini de section quelconque.
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Discontinuité du champ a la traversée

d’une distribution surfacique

de courants

Nous avons constaté a plusieurs reprises (cf. § 4.2, 4.3, 4.4 et 4.5) que le champ
magnétique subissait une discontinuité a la traversée d’une distribution de courants

surfaciques.

Dans tous les cas cités, 1a composante normale du champ est continue, en revanche,

la composante tangentielle subit une discontinuité :
By—Bi=Hyjs Nnyz-

Nous admettrons la généralité de ce résultat.

A la traversée d’une couche parcourue par un courant surfacique de den-
sité jg, la composante tangentielle du champ magnétique subit une dis-

continuité finie :

—

1=HMyjs /\n12.

Application <

Un ensemble de N courants fili-
formes rectilignes indéfinis et
d’intensité 1, sont régulierement
disposés sur les génératrices d'un
cylindre a base circulaire de
rayon R et d’axe (Oz). Les N
fils sont jointifs et forment une
distribution de courant a la sur-

Jace du cylindre parallelement & Doc. 20. Solénoide infini
son axe (doc. 20). de section quelconque.

B,-

1) Modéliser cette distribution de courants filiformes
en 'assimilant a une nappe de courants surfaciques
dont on déterminera le vecteur densité de courant jg .
2) Déterminer le champ ﬁ(M) créé a lintérieur puis
a lextérieur du cylindre.

3) On s’intéresse maintenant a la valeur du champ au
voisinage de la nappe de courant. Vérifier qu’a la tra-
versée de la nappe de courant, le champ subit la dis-
continuité : By —B1=wyjs A\nyy .

1) L’opération proposée est une opération de nivelage.
Le vecteur densité de courant a pour norme : 2nR jg= NI
et le vecteur densité de courant est :
Js = % €.
2) La symétrie cylindrique de la distribution de cou-
rants nous permet (cf: § 4.4) d’affirmer que le champ
est orthoradial et que sa norme ne dépend que de la
coordonnée r: B (M) = By(r)eg.

Nous prendrons donc, comme contour d’ Ampere I un
cercle d’axe (Oz) et de rayon r (doc. 21). Bien remar-
quer I’orientation de I".

A 'intérieur du cylindre (r < R), le courant enlacé par
Testnulet B(M)=0 .

A Iextérieur du cylindre (r > R), le courant enlacé par
I'" vaut NI donc:

B(r)= R

€9 =Hojs €9-

HoNT
2nr

Au voisinage de la nappe de courants, le champ vaut :
B(Ry)=Hpjseg-

Doc. 21.

3) A la traversée de la nappe de courant, de I’intérieur
vers ’extérieur du cylindre, le champ subit la discon-
tinuité : B (R,)—B (R.) = yjs €9 = o js /\ €, cequi
est bien de la forme attendue.
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8. Le théoreme d’Ampére

A el C O F R S e

® THEOREME D’AMPERE

La circulation du champ magnétostatique B~ créé par un ensemble de courants sur un contour I”est égale a la
somme des courants enlacés par I multipliée par (o: Cr = r B.dr = ; ed, -
&=1,si I traverse S orientée par I danslesensde n. & =—1, si [; traverse S danslesensde —n. g =0,

si I; ne traverse pas S.

Le théoréeme d’ Ampere donne acces au comportement intégral du champ magnétostatique qui est un champ a flux
conservatif.

@® CALCUL D’UN CHAMP MAGNETIQUE

Le théoreme d’ Ampere permet une détermination rapide du champ magnétostatique pour des distributions de cou-
rants de symétries élevées. Apres détermination de la forme du champ a I’aide de considérations de symétrie, son
application a un contour de géométrie adaptée aux symétries du probleme permet de déterminer 1’amplitude du
champ.

@ DISCONTINUITE DU CHAMP

A la traversée d’une couche parcourue par un courant surfamque de densité jg, la composante tangentielle du
champ magnétique subit une discontinuité finie : B, — B = UoJs Anpy.

(ontrole m;zﬁ/(e

v’ Quelle convention utilise-t-on pour orienter une surface ouverte S, lorsque le contour I” qui la délimite est orienté ?
¢ Enoncer le théoréme d” Ampere et en donner un exemple d’application.

v’ Retrouver, par application du théoréme d’ Ampere, 1’expression du champ magnétique créé par un fil rectiligne
infini parcouru par un courant /.

v’ Retrouver, par application du théoréeme d’ Ampere, 1’expression du champ créé par un solénoide infiniment long,
en un point de son axe, en supposant que le champ extérieur est nul.

Du tac au tac (Vrai ou faux)

I. Considérons deux surfaces ouvertes délimitées 3. Il n’est pas nécessaire qu’un contour d’Ampére
par le méme contour orienté I et, toutes deux, soit une courbe fermée.
orientées par ce méme contour. Les vecteurs nor- Q Vrai Q Faux
maux aux deux surfaces orientées sont des vec-
teurs sortants de la surface fermée

4. Le théoréme d’Ampeére établit la relation qui
lie le champ magnétique a ses sources (les

U Vrai Q Faux courants), tout comme le théoréme de Gauss
2. Si la distribution de courants ne posséde pas de établissait la relation entre le champ électrique

symétries suffisantes, il n’est pas possible d’ap- et ses sources (les charges électriques).

pliquer le théoreme d’Ampére. O Vrai O Faux

Q Vrai Q Faux P Solution, page 156.
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Exercices

;I,,,.,f Spire et solénoide

1) a) Calculer la circulation du champ magnétique le long
deI’axe (Ox) (de —o0 a + ) d’une spire circulaire de rayon
R et parcourue par un courant d’intensité / .

b) Interpréter le résultat obtenu.

2) Calculer de méme la circulation du champ magnétique
le long de I’axe (Ox) (de —o0 a + ) d’un solénoide circu-
laire de rayon R, de longueur € et comportant N spires join-

tives parcourues chacune par un courant d’intensité 7 .

Z'«, Fil

-

Un courant filiforme d’inten-
sité [ circule le long de I’axe
(Oz) d’un triedre trirectangu-

1
laire (Oxyz).
1) Calculer la circulation du 0
champ magnétique créé par a 4

_ (D)

ce courant le long d’une droite
X

(D) orthogonale au fil et
située a la distance a de ce

fil.

2) Interpréter le résultat obtenu.

é Cylindre avec cavité cylindrique

Une cavité cylindrique, d’axe
(O’7) et de section circulaire
de rayon R’, a été pratiquée
dans un cylindre conducteur
d’axe (Oz) et de rayon R
(doc. ci-contre). En dehors de
la cavité, le conducteur est
parcouru par un courant
constant de densité uniforme
j=jie.

Déterminer le champ magnétique en tout point de la cavité.

Cylindre avec cavité.

é’w Courant filiforme devenant surfacique

Un courant d’intensité / circule dans un fil rectiligne de sec-
tion négligeable, confondu avec le demi-axe (Oz) (z < 0).
Arrivé en O, il circule sur la surface d’un disque de centre O
et de rayon a, puis sur la surface d’un cylindre conducteur
creux d’axe (Oz), de rayon a et d’épaisseur négligeable.

1) Déterminer 1’expression du champ magnétique en tout
point de I’espace ou il est défini.

2) Vérifier les relations de passage (continuité ou disconti-
nuité) du champ magnétique.

~ . Céble coaxial particulier

Une ligne coaxiale (géométrie modélisée cylindrique) est réa-
lisée avec un matériau conducteur dont les propriétés magné-
tiques sont équivalentes a celles du vide. Un cylindre conducteur
interne plein, d’axe (Oz) et de rayon a est entouré d’un deuxieme
conducteur coaxial, de rayon intérieur b et de rayon extérieur
b, . L'espace entre les deux conducteurs est vide.

Le conducteur central est parcouru par un courant d’intensité
I, selon (Oz), et le retour est assuré par le conducteur péri-
phérique. Les densités volumiques sont supposées uniformes.
Calculer le champ magnétostatique créé par une telle distri-
bution en tout point de I’espace.

. Champ magnétique dans un conducteur

_—

jSC

]SD
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8. Le théoreme d’Ampére

Un courant électrique d’intensité / circulant dans un long fil
rectiligne entre dans un conducteur qui occupe tout le demi-
espace z >0 et dont les caractéristiques magnétiques sont
équivalentes a celles du vide et 8’y répand uniformément (les
différentes directions du conducteur sont supposées équiva-
lentes).

Etablir, dans ces conditions, que le champ magnétique en un
point M, de coordonnées sphériques r et 6 est :

Z’ Long cylindre en rotation
autour de son axe

Un long cylindre, supposé infini, de rayon R et chargé unifor-
mément en volume avec la densité p, tourne a vitesse angulaire
o constante autour de son axe (Oz) relativement au
référentiel Z . Le milieu a les mémes propriétés magnétiques
que celles du vide et il n’existe pas de charge surfacique.
Calculer, dans le référentiel 2, le champ magnétostatique
créé par une telle distribution de courants.

§,..., Distributions cylindriques de courants

Deux cylindres (D) et ), infiniment longs, de méme rayon
R, d’axes paralleles (de vecteur directeur e, ) et de centres O
et 0, distants de 2d (d < R) sont parcourus respectivement
par des courants volumiques uniformes :

J1=jez et jp=—je; .
Déterminer le champ magnétique dans la région commune
aux deux cylindres (donc vide de courants).

A - o
g,,... Modélisation d’un solénoide

Soit en ensemble de vingt et une spires circulaires de rayon
R, réalisées avec un fil de section négligeable, disposées

régulierement, distantes de R

4
courues par un courant d’intensité / . Les résultats d’un logi-

ciel permettant I’étude du champ magnétique créé par un
ensemble de spires quelconques sont les suivants :

les unes des autres et par-

1) Avec R=1; I =1 ; po= 4n :le champ magnétique
sur I’axe, au centre est égal a2 b; = 46,98 , et sur la face de
sortie by = 27,87 .

En déduire le champ magnétique sur I’axe, B | (au centre) et
B (sur la face de sortie). Les formules classiques du solé-
noide sont-elles applicables ?

2) Une ligne de champ issue d’un point A de la spire
centrale situé a 0, S0R de I’axe du solénoide, passe en
un point B de la spire de sortie situé a 0, 64R de I’axe.

TTTTTTT [

2

SN A
|ﬁ ]

—n

= by =46,98

\QC 27,87
A

Justifier ce résultat.

'Z,Q, Sont-elles de nature
magnétostatique ?

Soit cing configurations de champs de vecteur V . Préciser si
les configurations proposées peuvent étre celles d’un champ
de nature magnétostatique. On
supposera que les lignes de
champ sont invariantes par
translation selon un axe (Oz)
perpendiculaire au plan de
figure. Les fleches représen-
tent le champ V' et leur lon-
gueur est proportionnelles a
la norme du champ || 14 |- A

Cas a.

Cas b. Cas c.
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Exercices

Y

i

Cas d. Case.

/L:/ Cartes de champs magnétiques

On a tracé, a I’aide d’un logiciel de simulation, des cartes de
champs magnétiques créées par des courants circulant dans des
fils rectilignes perpendiculaires au plan de figure, en présence
éventuellement d’un champ magnétostatique uniforme contenu
dans le plan de figure.

Les intensités circulant dans les fils sont supposées égales,
mais les sens sont a préciser, 1’axe (Oz) pointant vers I’avant
de la figure.

Décrire chaque configuration envisagée, en vérifiant a chaque
fois les propriétés générales d’un champ magnétique.

Que peut-on dire des vecteurs champ magnétique B en P; ,
Py, P3yetPy?

()
=

Cas a.
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Corriges

Solution du tac au tac, p. I51.

l. Faux 3. Faux

2. Faux 4, Vrai

jﬂ,.ﬁ 1) a) Le vecteur champ magnétique créé par une spire (de rayon R, par-

courue par un courant d’intensité /) en un point de son axe est donné par :

B(M) !;0 sin® fe.
R] T a
1 D W)
x' OKL M X
La circulation de B sur (v'Ox)estégalea C = j . B(x)dx, avec :
R R . .
x=— — ;dx=— doet sinf=sina.
tan o -
! tol sinla T M
SOitc:f 0 A2 Ria= @)
2R sin%a

b) Soit le contour fermé constitué de la
droite (D) et du demi-cercle (I) de rayon
r infini.

! (D)

pyBdC =l

f{B B.d€ =p,l.
(D) +()

D’ou J’(I') B.d(=0 , ce qui est normal, car nous verrons dans le chapitre 9 que pour
rgrand, B varieen — , donc I'intégrale tend bien vers 0.

2) Le soliiné)l'de étant constitué de N spires, en utilisant le résultat précédent, nous

avons B(x)dx =pNI.
[ ey

g
%: 1) Le champ créé par le fil en M est : B (M) = —J — et sacirculation

élémentaire le long de la droite (D) s’€crit :

uOI cos fdy

Interprétation

Pour obtenir un contour fermé, il
faut associer une droite (D) paral-
lelea (D) : lacirculationde B sur
les parties BC et DA finies d’un

champ tendant vers 0 en % est D
nulle. Dot : g

B .dM =yl
ﬁf) A

)

et
plein d’axe (Oz) et de rayon R, parcouru par un courant de densité uniforme i,
et du champ B, d’un cylindre plein d’axe (0’z) et de rayon R’, parcouru par un
courant de densité volumique uniforme - .

Pour le cylindre plein :

Procédons par superposition. B estlarésultante du champ El d’un cylindre

Ry, . Mo — , —
B\M)=Fjreg =75 (j NOM).
De méme Bo(M) = %(-TAO—M ).
iy

Le champ résultant est alors : B= B1+B2 ) (G AN00).

Le champ est uniforme en tout point de la cavité. Il est perpendiculaire & 00'.

é;“" 1) Tout plan contenant I'axe (Oz) est un plan de symétrie des courants, donc :

B(M) =B(r,6,7) ¢y
Le systeme de courants est invariant par rotation autour de (0z), d’ou :
BM) =B(r,2)eq .

Appliquons le théoréme d’ Ampere en considérant des courbes de circulation de rayon
retdaxe (07) :

dC=B(M).dM 7
- 4 -
Comme r= Ose,y-atanﬁ y
_ adf —
et dy= —26,11V16nt dB(M)
M
dC= MO] d@ et par suite : r
X| e
C= }lolf dg_uil €o 0
2 10) a X

— _ Mol .
o z<0: B =—¢p;
72<0: By 2 60
: S 52
e 2>0:sir>a: By = o 60 8 r<a:Bj; =0
e, partie cylindrique (C)
M / Jsc
€p Z A
. 1 »
U | o
z
disque (D)
2) Etudions les relations de continuité deB :
o Sur la partie cylindrique (C)
j; = ZI]Ta ¢, . Nous vérifions bien que {(@(B_—I?S )Bi—I;O](S)C her
e .(By —B3)=0.
o Sur le disque (D)
jg = ﬁ e, . Nous vérifions bien que {@1(;}3 )BiI;OJOSD n-e,
€;.(byp =b3)=U.



8. Le théoreme d’Ampére

5

s Tout plan passant par M et I'axe de symétrie (z'Oz) est un plan de symétrie

de courants, donc B est orthoradial : B =B (1, 6,2) eg . Le systéme de courants
étant invariant par rotation autour de (z’z) et par translation suivant (z'z), nous avons :

B =B(e;.

=
|

L S
—

Y ——
-—
-— ]
|

Q il Tﬂ

F‘""\—.

=TT
= T

__MH'“\\

~

a

-
—

—
s
Y
I ——,
—
I —
————

—

—

=

L'application du théoreme d’ Ampere avec une courbe fermée constituée d’un cercle
de rayon r et d’axe (Oz) nous donne :

L

o 1<q: ="V .

r<a B = aze(,,

<r<by; Fel -
¢ as<r e —EEQ,
by<r<ty: Bt (10 T o
1STs0y —2m< m)eo,
« r>by B =0.

Remarquons que les densités volumiques de courants sont telles que :
o cylindre derayona: jy, == e; ;

a

I
e

A
J'[(b2 = bl )
La simulation ci-dessus nous permet d’illustrer les résultats.

¢ cylindre de rayon « by, by » : JW ==

S

— 1) Les différentes directions étant équivalentes, la densité volumique de cou-

rants dans le conducteur est de la forme j,; =jv(e, .

Le flux de ce vecteur a travers une demi-sphere de rayon r doit étre égal a I, d’ol:

= _ J =
JV *ﬁer-

Tout plan passant par M et contenant I'axe (0z) est un plan de symétrie des courants,
dod B =B (1, 6, ¢) e; .

Le systéme étant invariant par rotation autour de (Oz), nous avons B =B () e; .
Appliquons le théoreme d’Ampére en prenant un contour (I) fermé constitué
d’un cercle passant par M et d’axe (0z). La circulation de B sur (I') :

(B (1, 6) 2mr sin 6) est égale & w fois le flux de jy a travers toute surface

s’appuyant sur (r), donc en particulier une calotte sphérique de centre O, soit :
fojy(r) 27 (1 —cos ) r2.

M]—cos@ 'ﬁ—ﬂtan(ﬁ) —

Dol B E0= 50 “5ng % =20 W3] % -

M;ﬁ La densité volumique de courants est égale 3 j, =pwrey .

Calculons B en M : le plan passant par M et perpendiculaire a (Oz) est un plan de
symétrie des courants, donc B =B (r, 6, z) e, . Le systeme de courants est invariant
par rotation autour de (0z) et par translation suivant (Oz), donc B =B (r)e; .

Cette répartition de courants est assi-
milable & un empilement de solénoides
infiniment longs, donc B (r>R) =0.

Z A B

Pour calculer B l'intérieur du systeme
de courants, appliquons le théoreme
d’ Ampere : la circulation sur les parties | (2 7
AB, BCet CD estnulle. D’oti :

R
BV =poh [ jy)dr.

Ce qui nous donne :
B ()= R - R

&

—

BCXl:O

Remarque
Le champ B (r) est le champ magnétique créé par 'empilement de solénoides (d’épais-
seur d r et portant des intensités surfaciques djs=jydr ) infinis, situés entre r et R .
Le champ magnétique d ’mé solénoide po%mnt js étant égal a pjg en

norme, nous obtenons B :J wodjse, =| mojydre, .
r r

Nous obtenons la méme intégrale.

3

el Le plan (xOz) est un plan de symétrie des courants, donc B est perpendiculaire

aceplanet B =B (x ), 2) @y

Le systeme de courants étant invariant par translation suivant (0z), B =B(x yey .
Si nous sommes dans la région commune aux deux cylindres, nous sommes a I'inté-
rieur des deux cylindres.

Cherchons B | cré€ par le cylindre @ en un point intérieur au cylindre. Ce champ
est orthoradial By (M) =B (0 M) eq . Lapplication du théoréme d’ Ampére sur
un contour fermé ["circulaire de centre O et de rayon r; = 0 M < R nous donne :

By 2mr = poj mr?, soit BT(M): %]T/\OW;I‘

De méme : I§=+%5AOT)M

. o an Mo~ o S Mg
et Bioul (M)—7]€z A(OIM_OzM)—7191A0102 )
Soit E=%j(0102)é;.
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Corriges
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Doc. 1. Simulation 1.

Le champ est uniforme dans la cavité, comme I'indique les simulations sur les docu-
ments 2 et 3.

/ i ,/Cylindre 2
X ———
S \

cylindre i\
\ \\‘
N
-

Doc. 3. Simulation 3.
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Remarquons que nous visualisons un point de champ nul ; considérons un point P situé
Al'extérieur du cylindre (D et a I'intérieur du cylindre Q) .

— g — R o—  — g — ~—
BI(P)=7 i A%OlP et By ()= jy AOP.
1

L

-

. 2 . .
Do B(P) =7 je: /\<$ 0P —02P) quiestmulsi —— = 0,P,
|

soit (en posant 010, = 2d)_R2 =x%, —d? . Sur les simulations 2 et 3 (doc. 2 et 3)
R=3;d=1,dou xp= v10 =316, ce que donne le logiciel.

dg,,, 1) Le champ créé par un solénoide (cf. chapitre 7, § 5.3.3.) est :
B= MUTM (cos & — cos o)

ol 7 est le nombre de spires par unité de longueuret ¢, @ respectivement les angles
sous lesquels sont vus les rayons des faces dentrée et de sortie du solénoide.

. | ..
Ici, n= R =4 numériquement.

o)
)

R
10

o Au centre : cos 0 = =093 et cosoq =—cos, ce qui donne,

| p2 ml)z
v R +( 4
dans les conditions de la simulation :

By =pgnl cos op =41.4.093=4675.

Ce qui est tout a fait satisfaisant car 1'une erreur relative n’est que de 0,5 %.

20R
* Au centre de la face de sortie : cos 0p =0 et lcos oyl = $ =098,

prond
By= =~ [cos o |=2m.4.0,98 = 24,63.

L'erreur relative est, cette fois, d’environ 12 %.

Conclusion
Le champ magnétique & I'intérieur d"un solénoide est calculable par la formule classique,
méme si les spires ne sont pas vraiment jointives.

2) Le champ magnétique étant a flux conservatif, nous devons avoir approximativement :
Bywrl =Byr}, soit [0 gse /B8 s
ary =Bymry, soit rp=ry\/ — =05R 4/ 57¢7 =065R.
10 22575 27T\ B, \ 87

Nous trouvons 0,65 au lieu de 0,64 .

Cet écart provient du fait que B nest pas uniforme sur la face de sortie, alors qu’il
I’est avec une excellente approximation dans le plan de la spire centrale.



8. Le théoreme d’Ampére

':lf""'Q Nous nous intéressons a la carte d’un champ magnétostatique ; rappelons que :

* le champ B est  flux conservatif :

— leflux a travers un tube de champ est le méme en toute section ; la norme du champ
est d’autant plus élevée que la section est étroite,

— les lignes de champ de B sonten général des courbes fermées. En particulier, et
contrairement au champ €lectrostatique £ les lignes de champ de B ne peuvent partir
d’un point donné (ou aboutir en ce point) ;

* la circulation du champ magnétique sur un contour peut étre non nulle ; il existe
alors, d’apres le théoreme d’ Ampere, un courant enlacé par ce contour.

Etude des divers exemples

*Casa

Les lignes de champ sont paralléles et la norme du champ est constante le long d’une
ligne : le flux de ce vecteur est donc conservatif. Ce champ est de nature magnéto-
statique. La circulation sur un contour rectangulaire étant non nulle, il existe une den-
sité volumique de courants, perpendiculaire au plan de figure, pointant vers I'avant a
gauche de I"axe central A et vers |'arriere a droite de celui-ci.

Ce champ ne peut étre aussi de nature électrostatique (circulation non nulle sur une
courbe fermée).

*Casb

Le flux sortant d’une surface fermée cylindrique de hauteur /, entourant le point O
est manifestement positif, donc non nul. Le champ considéré ne peut donc pas étre un
champ de nature magnétostatique.

La circulation d’un vecteur de la forme V(r) e, (coordonnées cylindriques) est nulle
quel que soit le contour fermé choisi. Ce champ a circulation conservative est
de nature électrostatique. Il existe alors une densité volumique de charges positive dans

cet espace. Si le champ est en ; , seule la ligne perpendiculaire au plan de la figure

en O porte une densité linéique de charges positive.

*Casc

Le flux entrant a travers la surface fermée définie par un cylindre d’axe (0z), de rayon
r et de hauteur / n’est pas nul. Le champ n’est donc pas a flux conservatif ; il ne peut
donc s’agir d’un champ de nature magnétostatique.

La circulation du champ sur un contour fermé constitué d’un cercle de centre O et de
rayon rn’est pas nulle. Il ne peut donc pas s’agir d’un champ de nature électrostatique.

+Casd

Les lignes de champ sont circulaires, et la norme est la méme en tout point d’une ligne
de champ. Ce champ est donc a flux conservatif ; il peut s’agir d’un champ de nature
magnétostatique.

La circulation du champ sur un contour fermé constitué d’un cercle de centre O et de
rayon  n’est pas nulle. Le théoreme d’ Ampére appliqué a ce contour confondu avec une
ligne de champ montre qu’il existe des courants (volumiques ou non), paralleles a
(0z). 11 pourrait s’agir d’un fil rectiligne confondu avec (0z), si B(r) varie en % T
étant la distance a Iaxe (0z), dans ce cas le courant serait entrant, dirigé

suivant (— 0).
La circulation du champ sur le contour fermé n’étant pas nulle, il ne peut pas s’agir
d’un champ de nature €lectrostatique.

+Case

La configuration est semblable a la précédente mais cette fois la norme du champ est
une constante. Ce champ est toujours a flux conservatif ; il peut donc s’agir d’un
champ de nature magnétostatique.

Il existe une répartition volumique de courants perpendiculaires au plan de figure,

pour satisfaire au théoreme d’ Ampére. Montrons que m = (é) e, .

La circulation de B(r) =cte sur un cercle de rayon r et de centre O nous donne :
T

B(r)2nr=uoj0 % 2mr’dr’, ce qui est vérifié.

./l
1
Deux fils sont parcourus par des courants de méme sens et d’intensité /. Au centre
0, le champ B est nul et quatre lignes de champ s’y rencontrent.

Lorsque la distance entre deux lignes de champ voisines augmente, le champ diminue.
Le champ est faible entre les deux fils.

En des points éloignés de (0z), les lignes de champ sont quasi circulaires : I'ensemble
des deux fils se comporte approximativement comme un seul fil de courant double
placé sur (0z).

*Casa

yr  —

Doc. 1. Simulation 1 : Evolution graphique du champ magnétique sur la droite (y'Oy)
(plan de symétrie des courants IT;).
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Corriges

Le plan médiateur (yOz), et le plan des fils (xOz) sont des plans de symétries I1; et IT des
courants. Ils sont traversés perpendiculairement par les lignes de champ (cf. S.1 et S.2).
(0z) étant I'intersection des deux plans de symétrie T et II des courants, est un axe
de symétrie des courants, d’ott B(P)=—=B(P3) et B(Py) =—B(Py4) ce quise
vérifie sur la figure. De méme nous avons :

B, —— |+B
B. alors B(P,) =
y

si B(P))=

—
. B(P3) =
_By

_Bx =13
‘—B}. etB(P4)—‘+By -

HH”MMNNNHM

X

’ ’hm

muumumuu )

&

1

Doc. 2. Simulation 2 : Evolution graphique du champ magnétique sur la droite (x'Ox)
(plan de symétrie des courants Ih).

+Cash

Deux fils sont parcourus par des courants en sens contraire et d’intensité / (vers 1'avant
pour le fil A et vers I"arriere pour le fil B). Si on déplace le long d’une ligne de champ,
le champ est plus intense dans la région centrale, ot les lignes de champ sont serrées.

Le plan (yOz) est un plan d’antisymétrie IT* des courants ; B est dans ce plan (confondu
avec une ligne de champ). L'intensité du champ décroit rapidement quand le point
s’éloigne des fils. Le plan (xOz) est un plan de symétrie II des courants. B est per-
pendiculaire a ce plan (perpendiculaire aux lignes de champ) (simulation 3).

(Oz) est'intersection des deux plans de symétrie [Tet d"antisymeétrie [* des courants, d'ol
B(P1)=B(P3) et B(Py)=B(P.), ce qui se vérifie sur la figure. De méme nous avons :

B, ____ 7B +B, -B,

,alors B(Py) = ,B(P3) = .
B, P2 +B, (P3) +B, +B,

si B(P))=

etB(Py=

! mmﬂmmtrmﬂmﬂ’ = :
G

N

Doc. 3. Simulation 3 : Evolution graphique de B sur laxe (x’Ox).

*Casc

Un fil est parcouru par un courant selon (0z) plongé dans un champ BT) uniforme
pointant vers la droite.

Le champ est d’autant plus intense que les lignes de champ se resserrent. Le champ
total est plus intense sous le fil qu’au-dessus.

Le plan (yOz) est un plan IT de symétrie des courants (méme ceux créant lﬁ ,un
solénoide infini d’axe horizontal par exemple), B est perpendiculaire a ce plan en
chacun de ces points (simulation 4). Les lignes de champ lui sont toutes orthogonales. Plus
généralement nous avons :

si B(P))=

By ,alors B(Py) =
By

+B, |
= By
Il existe un point de champ nul (le point P), ol se coupent plusieurs lignes de champ

(ici quatre : remarquer leurs orientations), dans le plan de figure. Ce point P est tel
que:

ol

BO_E

=0 (avec r =0P).

B
=
=
/

=

‘hﬁm

Doc. 4. Simulation 4 : Evolution graphique de B sur l'axe 0'0y).

¢ Casd
Deux fils sont parcourus en sens opposé par un méme courant (vers I’arriere pour le
fil A et vers I’avant pour le fil B) dans un champ uniforme pointant vers la droite.

[In’y a pas de plans de symétrie ou d’antisymétrie des courants ; mais (Oz) est un axe
d’antisymétrie des courants (le champ uniforme peut étre celui d’un solénoide d’axe
horizontal). Les lignes de champ de B obéissent a cette symétrie ; remarquons que :

B (x,y) =B (=x,-y).

La valeur plus intense du champ est située entre les fils.

Il existe deux points de champ nul (P et Py) dans le plan de figure (ici quatre lignes
de champ partent de ces points : remarquer leur orientation). Ces deux points sont
symétriques par rapport a (0z) .

+Case
Deux fils sont parcourus par des courants de méme sens (vers 1’avant pour les deux
fils) dans un champ uniforme pointant vers la droite.

Le plan (yOz) est un plan de symétrie des courants (le champ uniforme peut etre celui
d’un solénoide d’axe horizontal). Les lignes de champ de B sont orthogonales a ce
plan (simulation 5).

Il existe un point de champ nul dans le plan de figure ; de ce point partent six lignes
de champ (remarquer leurs orientations).
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Doc. 5. Simulation 5 : Evolution graphique de B sur laxe (y'0y).

+Cas f

Trois fils sont parcourus dans le méme sens par un méme courant et placés aux sommets
d’un triangle équilatéral.

Le centre O est le seul point de champ nul dans le plan de figure ; de ce point partent
six lignes de champ (remarquer leurs orientations).

Les lignes de champ sont beaucoup plus espacées pres du centre qu’au voisinage des
fils ot le champ est intense. ~

Le plan (yOz) est un plan de symétrie 1 des courants. Les lignes de champ de B sont
orthogonales a ce plan, sauf au point de champ nul O. Il existe deux autres plans
vérifiant cette propriété déduits du précédent par des rotations de 2a/3 et 4a/3 autour
de (0z).

*Casg

Méme configuration que le cas f sauf que le fil B est parcouru vers I’arriére par le
courant d’intensité I. Noter la symétrie par rapport au plan médiateur de AC qui
contient le fil B et I'existence de deux points de champ nul (dans le plan de
figure) contenus dans ce plan de symétrie IT. Noter que le champ est intense entre les
trois fils dans le plan de symétrie, et qu'a grande distance des fils la topographie est
approximativement celle d’un fil unique placé dans la région centrale, du coté de AC,
sur le plan de symétrie, et parcouru par un courant d’intensité / (simulation 6).

*Cash

Quatre fils sont parcourus par des intensités identiques, et de méme sens, disposés
aux sommets d’un carré. Remarquer les symétries.

¢ Casi

Quatre fils sont parcourus par des intensités identiques disposés aux sommet d’un carré
AetB:—1,et Cet D:+1. Remarquer les symétries, ainsi que B sur le plan (yOy’)
(simulation 7).

AV

D)

X

1@
S

(=)

Doc. 6. Simulation 5 : Lignes de champ de B « loin » des trois lignes.

*Casj
Dans le cas j, les six fils disposés aux sommets d’un hexagone régulier sont
parcourus par des intensités identiques et de méme sens.

Doc. 7. Simulation 7 : Evolution de B sur I'axe ('0y).
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l Modele du dipdle.
B Champ dipolaire.

PRI’EREQUIS

B Champ magnétique.
H Dipdle électrostatique.

B Comparaison avec le dipdle électrostatique.

162

Dipole
magnétique

Nous verrons que toute distribution de courants
posséde un moment dipolaire magnétique

qui permettra de déterminer le champ magnétique
créé a grande distance.

Nous découvrirons alors une analogie forte
(mais non totale)

avec le champ dipolaire électrostatique
étudié au chapitre 5.

Les propriétés magnétiques de la matiere sont,
pour l’essentiel, interprétées par |’existence
de dipdles magnétiques microscopiques.

Le champ magnétique créé par un aimant,
par exemple, résulte de la superposition

des champs de tels dipdles.



I Moment dipolaire

I.l1. Surface associée a un contour

Considérons un contour I" (fermé) orienté (doc. 1) et une surface S s’appuyant
sur ce contour. L’orientation de la surface s’effectue en utilisant celle du contour
(cf: chapitre 8, § 1.5.) : un tire-bouchon tournant dans le sens choisi pour I tra-
verse S dans le sens de ses vecteurs unitaires normaux 7 .

Nous appellerons vecteur surface S le vecteur défini par :

s =|[ ias =[] a5".

Le vecteur surface S ne dépend pas du choix de la surface utilisée pour le défi-
nir : il ne dépend que du contour I et de son orientation.

Le vecteur surface S est une grandeur caractéristique du contour I orienté.

Par exemple, le vecteur surface du contour circulaire de rayon a du document 2
est:

S =na’n .
.2. Moment magnétique d’un courant filiforme

Le moment magnétique d’une boucle I" de courant d’intensité I (orien-
tée dans le sens du courant) et de vecteur surface S est:

M =1S.
La norme du moment magnétique s’exprime en A. m? .

Dans le cas d’une spire circulaire de rayon_a, parcourue par un courant d’intensité
I (doc. 2), le moment magnétique est : M = Ima’n .

Sur le document 3a, le plan I1; de la spire est un plan de symétrie de la distribu-
tion des courants et le moment magnétique ./ est perpendiculaire a ce plan. Tout
plan I, contenant I’axe de la spire est un plan d’antisymétrie et le moment magné-

tique J est contenu dans ce plan. Nous reconnaissons 1a deux proriétés caracté-
ristiques des vecteurs axiaux.

Le moment magnétique ./ d’un circuit filiforme est un vecteur axial.

Remarque

Nous verrons, plus loin, qu’une boucle élémentaire de courant de moment magné-
tiqgue M présente de fortes analogies de comportement avec un dipdle électro-
statique de moment dipolaire p’. Des différences fondamentales distinguent cepen-
dant ces deux entités. Montrons ainsi que le moment dipolaire p  est un vecteur
polaire.

En effet, tout plan I1} contenant le dipdle (doc. 3b) est un plan de symétrie de la
distribution de charges et le moment dipolaire p est contenu dans ce plan. Le plan
médiateur Il du dipdle est un plan d’antisymétrie et le moment dipolaire p  est
normal a ce plan. Nous reconnaissons la deux propriétés caractéristiques des vec-
teurs polaires.

9. Dipéle magnétique

.
n

r

Doc. 1. Surface S s’appuyant sur un
contour I orienté.

Sy

r
Doc. 2. Surface orientée d’un contour
circulaire.

Doc. 3a. Etude des symétries sur un
dipdle magnétique.

Doc. 3b. Etude des symétries pour un
dipdle électrostatique.
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Application 1

Moment magnétique atomique

Un électron, de charge q =—e et de masse m, , décrit,
dans une représentation classique, une trajectoire cir-
culaire d’axe (Oz) et de rayon r autour du noyau ponc-
tuel en O . On admet que le moment cinétique de 1’élec-
tron par rapport a l’axe (Oz) est :

h

Lzzﬁzﬁ

(h est la constante de Planck : h = 6,63.107347.5).
Calculer le moment magnétique associé a ce mouve-
ment orbital de I'électron.

L’électron tournant a vitesse » constante dans le sens
positif par rapport a (Oz) sur sa trajectoire circulaire, le
moment cinétique par rapport a (0Oz) est :

L,=mevr,avec L, =f par hypothese.
L’électron décrit N = T:Er tours par unité de temps et

I’intensité associée a un tel mouvement est :

_ __ev _ _ eh
I'=gN 2nr 2m gt

Le moment magnétique correspondant, mesuré algébri-
quement sur (Oz), est :
M=mr2=— € avec M =M

2 €

Ce calcul élémentaire fait apparaitre le magnéton
de Bohr :

_eh _ —24 2

= =926.10" " A.m~,

1B 2m,

qui sert d’unité de mesure des moments magnétiques en
physique atomique. Les électrons des atomes présen-
tent des moments magnétiques orbitaux (associés a leur
mouvement autour du noyau) et des moments magné-
tiques intrinseéques associés a leur « spin ». Le couplage
de ces moments magnétiques, selon les lois quantiques,
fournit un moment magnétique atomique éventuellement
non nul. Les atomes se comportent alors comme des
dipdles magnétiques interagissant avec un champ magné-
tique extérieur.

La notion de dipole magnétique est utilisée avec profit a
I’échelle atomique pour interpréter les propriétés magné-
tiques de la matiere.

I.3. Moment magnétique d’une distribution de courants

Dans le cas d’une distribution de courants limités dans 1’espace, la définition du
moment magnétique sera généralisée en considérant qu’il s’agit d’un ensemble
continu de boucles de courant filiformes (tubes de courants élémentaires) :

= [da.

Application 2

Une sphere chargée unifor- z

mément en surface, de < e
charge totale q et de rayon RAO
R, tourne a la vitesse angu-
laire o autour de (Oz).
Déterminer le moment
magnétique de la distribu-
tion de courants associée.

Doc. 4.

Utilisons les coordonnées sphériques d’axe (Oz) et
découpons la sphere en spires de largeur Rd6 (doc. 4).
L’intensité de cette spire, associée au mouvement de

rotation, est, en comptant la charge traversant une sec-
tion droite Rd6 par unité de temps :
[0)

dl = (E) o 2nR2sin 0d6),

o= o désignant la densité surfacique uniforme
a1

de charges. Le moment élémentaire d./( associé i cette
spire est d.J =nR?sin? 0dle, ,soit:

dit= 5L R2sin39d6 e,

JT
Comme j 0 sin36do = % , le moment résultant est :
. wgR*
./% == T ez 5
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Champ magnétostatique
créé par un dipole

2.1. Approximation dipolaire

Une boucle de courant crée, en tout point M de 1’espace, un champ magnétostatique
donné par la loi de Biot et Savart.

A grande distance de la boucle (% <<'1 pour une spire circulaire de rayon a

(doc. 5a)), la norme du champ magnétique décroit en % , comme il est possible
K

de s’en convaincre en considérant I’expression du champ créé par une spire en un
point de son axe (cf. chapitre 1, Application 3) :
— [ [ 3
B =0 sinag =0 — K
(R*+22)2

A grande distance (z >> R), I’expression précédente se simplifie en :

ol R o _ ol
R |zP T 2nfef

BM)=

puisque M =1nR%E;.

L’exercice 1, page 170, propose une autre vérification de cette propriété qui a son
homologue pour le dipole électrostatique : dans 1’approximation dipolaire, la norme
du champ E (M) créé par un dipdle électrostatique décroit en % .

%
Il est possible de démontrer, qu’a grande distance d’une boucle de courant (approxi-
mation dipolaire), le champ magnétique B (M) créé par la boucle ne dépend que
de ¥ = OM, du moment magnétique ./ etde I’angle 6= (AL , 7).

Dans I’approximation dipolaire, une boucle de courant est entierement
caractérisée par son moment magnétique ./ .

De nouveau, cette propriété n’est pas sans rappeler celle du dipdle életrostatique
qui est, lui aussi, entierement caractérisé, pour ses effets a grande distance, par son
moment dipolaire p.

Cette similitude fait souvent nommer une boucle élémentaire de courant, dipdle
magnétique.

2.2. Analogie avec le dipole électrostatique

Considérons un doublet de charges —¢q et +¢ (distantes de a) centré en O et de
moment dipolaire p° =gqa e, = p e, . Tout plan contenant I’axe (Oz) est un plan de
symétrie. Les lignes de champ du vecteur E , de révolution autour de 1’axe (Ox),
sont contenues dans de tels plans. Quelques lignes de champ électrostatique sont
représentées dans un plan contenant (Oz) sur le document 6a.

Considérons a présent une spire circulaire de rayon a, d’axe (Oz) et de moment
dipolaire magnétique .M =Ima> e, = Jle, . Tout plan contenant I’axe (Oz) est un
plan d’antisymétrie. Les lignes de champ du vecteur axial B , de révolution autour
de I’axe (Oz), sont contenues dans de tels plans. Le document 6b représente quelques
lignes de champ magnétostatique dans un plan contenant (Oz) .

9. Dipdle magnétique

Doc. 5a. Boucle de courant.

B(M)

Doc. 5b. Champ B (M) créé par une
spire en un point de son axe.
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Doc. 6a. Lignes de champ électrostatique d’un doublet — g
et +q.

Doc. 6b. Lignes de champ magnétostatique d’une spire.

L extension de la zone apparaissant sur ces documents est de 1’ordre de (10a)? .
Les deux cartes de champ obtenues sont clairement distinctes, car les comporte-
ments des champs au voisinage de leurs sources sont tres différents : le champ élec-
trostatique diverge a partir de ses sources (les charges) alors que le champ magné-

tostatique tourbillonne autour des siennes (les courants).

Si nous observons ces cartes de champ a une échelle beaucoup plus grande (zone
de I’ordre de (100a)? nous obtenons dans les deux cas la méme configuration des

lignes de champ (doc. 7).

Le champ électrostatique d’un dipdle p =p e, et le champ magnéto-
statique d’un dipéle ./ = Jle; ont le méme comportement a grande

distance r >>a.

4 Doc. 7. Ligne de champ d’un dipéle
qu’il soit électrique ou magnétique.




2.3. Application au calcul du champ magnétostatique

2.3.1. Champ dipolaire

Le champ électrostatique d’un doublet de charges a pour coordonnées sphériques

d’axe (Oz) (doc. 8), dans I’approximation dipolaire :
1 2pcosB 1 psinf
dmey 3 0 T0T dmey 43 €

E_

Du fait de I’analogie observée a grande distance des sources, nous supposerons que
le champ B créé au point M de coordonnées sphériques (r 6, ¢) par un dipdle

M = Al e, placé en O est de la forme :

Br: 230613 w 5 Bg Boa% g
I

r

t E,=0.

9. Dipdle magnétique

et B,=0.

Le facteur B( est une constante homogene a un champ magnétique que nous

allons déterminer.

Remarque : Il est possible d’obtenir ce résultat par développement du champ B
créé par une spire en un point éloigné. Un tel calcul est assez fastidieux.

2.3.2. Détermination du champ par identification

Pour trouver la constante By, nous pouvons comparer le champ dipolaire précédent

avec le champ créé par une spire en un point trés éloigné sur I’axe de celle-ci (doc. 9). P
Sur son axe (0z), le champ de la spire est (cf. § 2.1) : Iy |, 5 M
(l« <<l B@= M‘i— ‘“O‘M3 0 B 2
<] 2 |zf 2ae]
3
Identifiant cette valeur a B, =2B @ ,avec r =1zl nous obtenons : Doc. 9
oc.

ot

3_ U
Boa 4

Les composantes B,, By et B, en coordonnées sphériques, du champ d’un dipdle

magnétique placé en O et de moment . =i e, sont donc :

47 r3

MOM sin 6
4TC r3

B,=0

fB _#0M200%6

L’expression du champ magnétique du dipéle ./ est en coordonnées

yo 2M cos O e, + Msin O ey

sphériques d’axe (0, /[ ) : B (M) = 3

wy Bl g)E - M|

4n

Application 3

Soit un dipole magnétique de moment M porté par (0z).
Déterminer en coordonnées polaires (r, 0) les équations
des lignes de champ magnétique d’un dipole magnétique
dans un plan contenant I’axe (0z).

Son expression intrinséque est donc : B (M) =

Une ligne de champ étant une courbe (plane ici) en tout
point M de laquelle le champ B est tangent, les vecteurs
dM et B sont colinéaires : dM AB =0 .

73

En coordonnées sphériques (polaires dans un demi-plan

méridien), nous obtenons :

%_r@ soitg—

2cos O
B, - deo .

sin 0

r

Par intégration, il vient r =A sin? §, A étant une constante
dépendant de la ligne considérée.

B(M) ou E (M)
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Comparaison des propriétés des champs
E et B statiques

A ce stade, nous pouvons résumer et comparer les propriétés des champs électro-
statique et magnétostatique.

champ électrostatique champ magnétostatique
source charges fixes charges en mouvement
(courants)
champ dqp L 8Cp A€
EM) = 4JI:€ € py B(M)= MZM
0 (D) By D)y
(loi de Coulomb) (loi de Biot et Savart)
E est un vecteur polaire B estun vecteur axial
particule P dqp=qp 3Cp = qpv (P)
de charge gp | E est défini et continu en tout point | B est défini et continu en tout point
de I’espace sauf sur la charge de I’espace sauf sur la trajectoire
distribution dqp=p(P)dT 3Cp=Jj,(P)dr
volumique E est défini et continu B est défini et continu
en tout point de I’espace en tout point de I’espace
distribution Sqp=0(P)dS 3Cp=Jjs(P)dS
surfacique E est défini et continu en tout point | B est défini et continu en tout point
de I’espace, sauf sur la distribution | de I’espace, sauf sur la distribution
ol il subit une discontinuité nor- | ot il subit une discontinuité tan-
male: Ep- E| = —n1_>2 gentielle : Bo— B =[ly jsA |
€9
distribution distribution linéique : 3Cp=Id¢
linéique _ dqp=A(p)de B’ est défini et continu en tout point
E est défini et continu en tout point | de I’espace, sauf sur la distribution
de I’espace, sauf sur la distribution
force F(M) =dqy E(M) F (M) =5Cu (M) A B(M)
lignes E diverge a partir B tourbillonne autour
de champ de ses sources et ses lignes de ses sources et ses lignes
de champ sont non fermées de champ sont fermées
circulation la circulation de E la circulation de B est non
est conservative : f EM).d€ =0 conservative :
— BM).dC =y 2 &1,
E dérive d’un potentiel : f ) Ho D) **
_ 1 dgp (théoreme d’ Ampere)
4meg D) TPM relation entre le champ et ses sources
flux lefluxde E nest pas conservatif : le flux de B est conservatif :
#E(M).dE:Qg—i(')“ ﬁB(M).dS:O
(théoréeme de Gauss)
relation entre le champ et ses sources
dipdle le moment dipolaire le moment magnétique M =15
P =qP_P, est un vecteur axial
est un vecteur polaire
champ s o N R
— o 1 3P.Hr-p — U 3(M. P =M
r - 2 - ; 4.
dipolaire (r) dnz, 3 B(7) i 3
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Eeelce-dI>

® MOMENT MAGNETIQUE

Le moment magnétique d’une boucle de courant d’intensité / (orientée dans le sens du courant) et de surface
S, est: .

Mo=1S.
Dans le cas d’une spire circulaire :

M =Ind®n.
Le moment magnétique est un vecteur axial.

® CHAMP DIPOLAIRE MAGNETIQUE

En des points tres €loignés de la boucle de courant, son champ magnétique tend vers celui d’un dipole magné-
tique de moment ./ .

Le champ électrostatique d’un dipdle p' = p'e; et le champ magnétostatique d’un dip6le M= e, ontle
méme comportement a grande distance r>>a .

L’expression du champ magnétique du dipdle A est en coordonnées sphériques d’axe (O, M )

BM) = Mo 24 cos e, +. M sinGeg

o 4 =
Son expression intrinseque est donc : ey =%
B = o (3(Ml.g) e~
T 4m r3

Contrite rapide

Avez-vous retenu I'essentiel ?

¢/ Définir le moment magnétique A & une boucle de courant de vecteur surface S et d’intensité .

v’ Donner, dans I’approximation dipolaire, I’expression du champ magnétique B (M) créé par un dipole magnétique
de moment JL .

v’ Retrouver I’expression intrinséque du champ magnétique créé par un dipole magnétique de moment M.

Du tac au tac (Vrai ou faux)

|. Deux surfaces s’appuyant sur le méme contour 3. Le champ électrostatique d’un dipdle p = pe,

n’ont pas obligatoirement méme vecteur surface. et le champ magnétostatique d’un dipdle
M = e; ont le méme comportement dans tout
Q Vrai O Faux Pespace.
Q Vrai O Faux
2. Le mor’nent magn.ethue, tout comme son'homo- 4. Par analogie avec le dipole électrostatique, il est
logue électrostatique, le moment dipolaire, est possible d’analyser un dipéle magnétique comme
un vecteur polaire un doublet de « charges magnétiques ».
U Vrai O Faux 3 Vrai 4 Faux

» Solution, page 172.
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Exercices

;I,,,.V Champ magnétique
en un point du plan d’une spire

1//a
N

Une spire circulaire de centre O, de rayon a et d’axe (Oz) est
parcourue par un courant d’intensité / . Un point courant P
de la spire est repéré par I’angle ¢ que fait le vecteur OP avec
I’axe (Ox) de référence. Exprimer sous forme d’une intégrale
le champ magnétique créé en un point M de l’axe

(Ox) tres €loigné de la spire ( % >> 1).
Effectuer un développement limité en u = % de I'intégrale
et obtenir la partie principale du champ B (M) . Vérifier que

ce champ est bien celui créé par un dipdle magnétique au
méme point.

% Champ magnétique dans le plan
- d’un disque tournant

Un disque conducteur de centre O et de rayon R tourne a la
vitesse angulaire w constante autour de son axe (0z) .
Ce disque porte une charge totale g répartie avec un densité
surfacique totale (les deux faces sont comptées) :
o
= 70 5 )
[1-(5)
Y

R
ol r = OP désigne la distance du centre a un point P du disque.

1) Trouver la valeur de oy en fonction de g et de R .

2) Quelle est I’expression du champ magnétique créé par une
telle distribution en un point M situé dans le plan du disque
et supposé tres éloigné de celui-ci r =0M >> R .

S

... Chaine linéique de dipdles magnétiques

Une chaine linéique de dipdles magnétiques est répartie sur
I’axe (Ox) d’un repere orthonormé (O ; e, ey, e, ), avec
une densité uniforme / : un élément de longueur dx de la
chaine se comporte comme un dipdle magnétique de moment :

dul =Mdxe, .

1) a) Quelle est a priori la direction du champ magnétique
créé par cette distribution en un point quelconque de I’espace ?
Montrer qu’il suffit de déterminer ce champ sur 1’axe (Oy)
(par exemple).

b) Par un calcul direct, vérifier que ce champ est nul.

2) Que peut-on conclure de ce résultat concernant le champ
magnétique créé par un solénoide circulaire infiniment long,
en un point extérieur supposé tres éloigné de 1’axe du solé-
noide ? En déduire le champ magnétique créé par un solénoide
infiniment long en tout point intérieur au solénoide.

4’ . Mesure du moment dipolaire magnétique
o ;
d’un aimant

Soit un petit aimant de moment magnétique de norme
inconnue. On dispose d’une aiguille aimantée mobile sans-
frottements autour d’un axe vertical. A I’équilibre, cette aiguille
est orientée dans le sens de la composante horizontale du champ
auquel elle est soumise (voir exercice 7). Comment peut-on
mesurer le moment .,/ de I’aimant en un lieu ot la composante
horizontale By du champ magnétique terrestre est connue ?

Préciser le protocole expérimental pour le cas d’un petit
aimant qui aurait le méme moment magnétique qu’une bobine
de rayon moyen R =50 cm , comportant N = 10 spires par-
courues chacune par un courant d’intensité [ = 2 A ,
sachant que By =2.107°T.

é: Latitude géogragh.ique et inclinaison
du champ magnétique terrestre

Le champ géomagnétique Bt (champ dont la Terre est la source)
est caractérisé en tout lieu par sa norme, sa déclinaison D (angle
de la composante horizontale de Bt avec le Nord géogra-
phique) et son inclinaison / (angle que fait B par rapport au
plan horizontal). Cet exercice propose une premiere approche
tres simplifiée du géomagnétisme, dans laquelle on suppose en
particulier que la déclinaison est nulle en tout point.

1) Un dipdle magnétique de moment A, placé en O, crée en
tout point P de I’espace un champ magnétique B (P) . On
utilise les coordonnées sphériques du point P: || OP || = r et
9= (M,OP).

a) Rappeler I’expression de B (P) . Tracer quelques lignes de
champ.

b) Onpose o= (07§ ,B (P)) ; quelle relation simple lie ccet 6 ?

2) En supposant que le champ terrestre soit di a un dipdle
magnétique confondu avec 1’axe de rotation terrestre, quelle
serait la relation liant la latitude A du lieu et 1’inclinaison du
champ Bt en ce lieu ?
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Paris verticale locale

! ligne de champ

Sud du champ magnétique terrestre
B
BO'," y a\" l?r
P

L

S

ot Lig[\es de cha'mnp et char'n!) magnétique
créés par un dipole magnétique

Soit un dip6le magnétique de
moment M =.Jle, placé
en O . On repere un point M
quelconque par ses coordon-
nées sphériques de centre O
et d’axe (0z) :

r, et .

Dans un demi-plan méridien (¢ =cte) 1’équation d’une ligne
de champ donnée est de la forme r = A sin® 6.
1) En déduire que le flux du champ magnétique créé par ce

dipdle a travers une surface s’appuyant sur un cercle € d’axe
(Oz), vu sous I’angle 6 du point O, est de la forme :

. 9
&= f(s‘“r")-

Montrer que I’étude du flux du champ B d’une spire circu-
laire centrée en O et d’axe (Oz) a travers un cercle € de méme
axe (Oz) tres éloigné de la spire, suggere que :

I
e (smr 0) _

Nous ferons cette hypothese pour la suite. Préciser la valeur
de la constante multiplicative.

2) En choisissant judicieusement la surface s’appuyant sur €,
calculer le flux @ du champ magnétique du dipdle a travers
% sous forme d’une intégrale ou n’intervient que la seule
composante radiale du champ B . Compte tenu du résultat pré-
cédent conclure que cette composante radiale B, est de la

forme B, =2B 0026
e

, B étant une constante a expliciter.

3) Par un raisonnement équivalent, en déduire I’expression
de la composante orthoradiale By du champ créé par le dipole.

z,.« Mesure de la composante horizontale
- du champ magnétique terrestre

Un petit aimant, ou une aiguille aimant€e, assimilable a un
dip6le magnétique de moment ./ (rigidement li¢ & I’aimant)
subit, lorsqu’il est plongé dans un champ magnétique B uni-
forme, un couple de moment I" = M N\ B .

Cette expression est généralisable, concernant le moment des
forces au point ou est placé 1’aimant, lorsque le champ
magnétique n’est pas uniforme.

On se propose de mesurer la norme de la composante hori-
zontale By du champ magnétique terrestre en un lieu. A
Paris By est de I’ordre de 2.1073 T . Pour cela on dispose
d’une petite aiguille aimantée montée sur pivot, donc mobile
autour d’un axe vertical sans frottements. Ce petit aimant est
placé au centre O d’une bobine plate comportant N spires
circulaires de rayon R chacune (on néglige la section des fils)
contenue dans un plan vertical et alimentée par un courant
continu d’intensité / réglable.

Les rotations éventuelles de 1’aiguille sont mesurables sur un
cercle gradué, la graduation O correspondant a la position de
I"aiguille dans le plan de la bobine.

1) Méthode de la boussole des tangentes

Sachant que 1’on peut choisir le plan de la bobine, proposer
un protocole de mesure de la composante By du champ
magnétique terrestre.

L expérience a été réalisée avec By contenue dans le plan
de la bobine. Lorsque I’intensité passe d’une valeur nulle a
la valeur / I’aiguille tourne d’un angle . En déduire By .

Données : N=5 ; R=12cm ; I = 0381 A ; ¢ = 20°.
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Exercices

2) Méthode des oscillations

On utilise le méme matériel que précédemment mais cette
fois la position de référence (ou d’équilibre) de 1’aiguille est
perpendiculaire a la bobine.

On désigne par B¢ la norme du champ magnétique créé par
ce circuit.

On suppose [ tel que :

Montrer que la position d’équilibre de 1’aiguille aimantée
n’est pas modifiée par I’existence d’un tel courant / dans
la bobine.

Montrer que la période des petites oscillations de I’aiguille,
préalablement écartée de sa position d’équilibre, dépend du
sens du courant dans le circuit. Désignant par 7" et par 7" les
périodes des oscillations quasi sinusoidales observées pour

P T2+ 772
Bc<Byg. les deux sens (a préciser), établir que By = W C-
Corrigeé
Solution du tac au tac, p. 169. Z'
l. Faux; 3. Faux; . 1) Nous avons ¢ = ff odS.
-
2. Faux; 4, Faux.
La charge portée par une couronne de
4 rayon r et de largeur d r est égale a :
P dg=a2xnrdr. ® oLz
; R o
) Soit ¢ = f 70 2nrdr
R 0 /4 _( T\
I // B P épy R vV lR
e (2 B=Bez o sz‘l dL R
\/ M ! " 2T
@
Pour I'intégration, poser u = sin?@.
_ wl Pl . Dou:
BM)= dP A —=> estporté par (0z) (Ie plan (xOy) est un plan de symétrie | T
dm P du 2 2 q
=-|“singdp=1 et g=2no0R* et 0p= —— -
des courants). 0 2y1-u 0 2
acos @ \ X—acos @ —asingdg 8
OF =| asin 9 OM =|0: PM =|-asin 0 dP = acos 0dg. 2) L'intensité 81 circulant dans la couronne précédente est égale a Tq (T étant
0 0 0 0 5
la période de rotation du disque) : 81 = 7 @ D’ou le moment magnétique associé :
— ) g
—~ DM -acoslacosq —x)+(asing) : s
Nous obtenons. dF e & 2. 2 3 dp, puis d M = 24  mr2, ainsi que le moment magnétique de I’ensemble :
(x2+a2-2axcos g2 2n
_ I 2n 2 _ 1 cos — (R 7o (o
B = ;25 EF0) avec F= [ —100 g M =f0 T O
O (1-2ucos g+u)2 _(ﬁ)
En se limitant aux termes en 12 : Soit .
2 JM = % o R?
F(u) = f [—ucos g +u?(l —3cos? @) do=—mu?, :
0
= mlma . ugdll R :
- 7 e P emarque :
soit B (M) 4l 4y x

Ce qui correspond bien au cas du dipole (0 = %) .
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9. Dipdle magnétique

M  plan du disque
Oi OM=r l
|
1 B
B =— podl x
B 4ar3 (9_2)

1) a) Un dipole magnétique peut étre remplacé par une spire de petite dimension.
Tout plan (IT) perpendiculaire a (Ox) passant par P est un plan de symétrie des courants,
donc B (P) est perpendiculaire a ce plan et paralléle a (Ox) . Le systéme de courants est
invariant par translation ou rotation suivant (Ox), donc :

B(P)=B(p)e, avec p=HP.
Dot B (P) ne dépend que de la distance a I'axe (Ox) .

P

o
T

an

[\‘dl
U dl *

b) Calculons dB, en P (OP =y) dia d/ﬁ situé sur (Ox).

o

by BUNZG)E-dHE) . wll

dB,= qu—m(hos -1) dx.
= T N AR TR
Posons u =cos 6 ; d’ou r Gnd T g dx 7 de
3cos20- 1

et M dx=L 3ul-1)du.

rJ y.

u Al 1 A

Alors BX(P)= mﬁl (3112—l)duzm[u —thlzo .

2) La chaine linéique précédente de moments magnétiques peut modéliser un ensemble
de spires de méme rayon R et d’axe (Ox), régulierement réparties, donc un solénoide
infini. En un point éloigné de I'axe de ce solénoide, le champ magnétique est donc nul.
Etudions la relation entre ./ et le nombre de spires de rayon R par unité de longueur
n, parcourues par un courant /. Le moment magnétique d’une spire étant égal a
I7R?  nous avons Jdx =ndxIxR?,soit 4l =nInR?®.

solénoide infini

Retrouvons B 2 Uintérieur du solénoide par application du théoréme d’Ampere.
La circulation de B sur la courbe ABCD orientée nous donne :

(B /ey ) Bil =pontl,
soit Biy = monl , qui était le résultat attendu.

2

y )‘\ ®§
}—K
|
| e
I P
By . :B total
ey |
aimant a 7 i
- Aot oo
P B aimant
OP=r aiguille de la boussole

(aiguille aimantée)

L'ensemble est disposé comme ci-dessus dans un plan horizontal.

Byimant _ 2o M
BH 4n )‘3BH!

4?”’381_[
21y

tan o = soit M= tan o .

L'incertitude relative sur J( est égale a :

dul _ _da_ coso _ 2da
M COSZO! sine sin2¢

minimale pour @ = % :

1
B 1 . [2udls
11 faut donc choisir r pour que o= 3 soitr=|g B,

AN. : M =NzR2I =157 A.m?, cela donne r = 0,54 m, ce qui est facilement
réalisable.

5 DB ) =8é" +Bser By = 0% s e By= 0% g
s a =De, gep ,b,= CoS 0 ¢l 9—47”3 S o.

4 rd

b) tanc = % tan 6.

2) En tenant compte de I’orientation de /E (7,8.1022 A.m?), nous obtenons :
_1 _T o _1
o= 3 +1 et 6= 5 +4, dou tanl—ztanl‘

e 1) Le flux de B’ a travers toute surface s’appuyant sur un tube de champ

donné ne dépend pas du choix de cette surface (B est un vecteur 2 flux conservatif).
Les tubes de champ peuvent étre définis par une équation de la forme @ =cte.

2
sinf _

Engendrés par les lignes de champ, leur équation est donc aussi =

sin%0
=

cte.

Nous en déduisons @ = f (
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Corriges

+ Soit une spire circulaire d’axe (Oz) parcourue par un courant d'intensité / . Le flux
Pde B atravers un cercle € trés éloigné de la spire, de rayon a et de méme axe (0z)

. _ gt Bl SR o d
est donné par ¢ = ma R (z2+R2)~2RM - 2(175R)Z3

» , gl R
le champ magnétique sur I’axe de la spire étant égal a B = R 7l
(2+R)2
. Y , a? ‘
Soit @ = 7«'” —3 - Sachant que a = rsin 6 et z = rcos 6= r, nous obtenons :
7
Hy sin® 0
d= 7Vll ==

2) Sachant que B =B,¢, +Bgey et que nous désirons calculer B, , prenons
pour surface s’ appuyant sur le contour ¥ une calotte sphérique de centre O .

surface « sphérique »

¢ de centre O s'appuyant

sur le contour y

|
|
:
I |
i 0 T
\ - |
\ /M 1
\ |
\
trace N /} &)
< .
du contour ¥ S~ _-7

4 U Mol
Nous obtenons alors @ = fo 2arsinu B, (ru)rdu= OT sm)f@ ou encore :
L M sin2 g
fo sinu B, (ru)du = P
2 M( 4/% 1
La dérivation par rapporta 6 nous donne B (r; ) sin § = ﬁ im@r%s(? ,
. 2ug M go5 9
SOit : B.(, —?7

3) Nous désirons ne faire intervenir que By.
Nous savons que B, varie en 1 ,donc le flux de B & travers S estnul. Le flux
7

de B sur la surface conique est donné par ;

© M Gin?
b= f 2musin Odu By (u, 0) = MOT smr 9 , S0it (@ est constant) :
“ _ M M gin g
fr uBg(u 0)du= T

surface conique

se refermant
a l'infini sur
la calotte sphérique
de centre O : S,

du contour ¥
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La dérivation par rapport a r nous donne :
1Byl 0), 1Bz 0=~ 22 50
o = TR0 dn 12

Le champ magnétique étant en % ,(rBy(1; 0) = = 0, s0it :
r»

Byl )= 0= sinb
4 r’

}w: r=MNE , donc I"aiguille aimantée, assimilable a un dipdle magnétique,
s’oriente dans le sens du champ magnétique.

1) Si aucun courant ne circule dans la ®
bobine, 1'aiguille s’oriente dans la
direction de Byy . NI
Si le courant / circule, la bobine crée un -
champ B et I"aiguille s’oriente dans la
directionde B =By + Bc .
X Be NI
D’ou: tan 0= By~ 2RB, )
u N1 @
~ 2Rtana

Soit : By

-

By

AN.: Bg=27.10"5T.

2) Biw = By + Bc est toujours dans la direction et dans le sens de
By (Bc < By) : I'aiguille conserve la méme position d’équilibre.

Le théoreme du moment cinétique appli- i
qué a laiguille aimantée et de
moment d’inertie Ji par rapport a un
axe perpendiculaire au plan de la
figure passant par O donne : 0
d’6 : Q >

Joﬁ =—JBsin . B

Pour les petits angles, les oscillations sont harmoniques et de période : ./
T=2xn \ wB

En considérant les deux orientations de I'intensité dans la bobine, nous obtenons
(cf. schéma) :

/]
ecasa): T=2n \ 4B avec B=By +B¢;

i
scash): T'=2m \/ Jp » avec B'=By—Bc.

a) © ® b)
NI N N
Btotal Btotal
Bc By B¢ By
NI
® ®
B +B. 72 ‘ 2472
D’ol BH BC=T—2, soit BHzBCT +T2-
H~be 72-T



La force
de Lorentz

Jntioduehis™)

Hendrik-Antoon Lorentz (1853-1928) est un physicien
hollandais, trés célebre pour ses travaux en
électromagnétisme de la matiere. La force
électromagnétique qui s’exerce sur une particule
chargée porte son nom. Prix Nobel en 1902.

Joseph-John Thomson (1856-1940), physicien anglais,
mesure la grandeur (e/m) des électrons en 1891

et il réalise, en 1913, un spectrographe de masse mettant
en évidence l’existence d’isotopes

(méthode des paraboles). Prix Nobel en 1906.

Pierre-Simon Laplace (1742-1827), physicien frangais
auteur de nombreux travaux (mécanique céleste,
théorie du potentiel, vitesse du son...) a énoncé de
maniere précise les lois de la magnétostatique
relatives au champ magnétique créé par un élément
de courant (loi actuellement dite de Biot et Savart)

et la force subie par un élément de courant :

force de Laplace.

Edwin-Herbert Hall (1855-1938) découvre
I’effet qui porte son nom.

OB]ECTIFS

B Mouvements de particules chargées dans des
champs électriques ou magnétiques indépen-
dants du temps.

B Modele de conduction électronique dans les
métaux.

B Force de Laplace s’exercant sur un élément
de conducteur.

M Origine physique du champ de Hall.

PRI’EREQUIS

B Champs électrostatique et magnétostatique.

B Mécanique du point matériel.
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10. La force de Lorentz

© Hachette Livre ~ H Prépa | Electromagnétisme, I"® année, MPS-PCSI-PTS| - La photocopie non autorisée est un délic

Nous nous placerons dans le cadre de la mécanique classique et dans des réfé-

rentiels galiléens.

I L’interaction électromagnétique

I.I. La force de Lorentz

I.l.1. Formulation

C’est Lorentz qui, le premier, a décrit la force électromagnétique F agissant sur

une particule chargée.

La force électromagnétique subie par une particule de charge ¢ et de
masse m , se trouvant, a la date ¢, au point M du référentiel galiléen R ,

en présence d’un champ électrique E(M,t) etdun champ magnétique

BM ,1), et se déplacant a la vitesse 7(M,t),q est donnée par :

Fro=qlEM,t)+T(M,t) ;5 AB(M,1)].

Dans le cas de champs permanents et indépendants du temps nous avons :

Fro=q(E +7 AB).

Cette force de Lorentz traduit I’'une des interactions fondamentales de la physique ;
son domaine de validité n’est pas limité dans le cadre de nos connaissances

actuelles.

Les champs E et B introduits ici sont créés par des sources (charges et cou-

rants) et définis relativement au référentiel R .

Comme toute force d’interaction, fLo ne dépend pas du référentiel alors que

la vitesse en dépend. Les champs E et B peuvent donc dépendre du référentiel.

Remarquons que les champs E et B sont de natures différentes ; le rapport g

est homogene a une vitesse. Dans le Systéme International d’unités, E s’exprime

en volts par métre (V.m~!) et B en testa (T).

La charge ¢ est une propriété intrinseque de la particule : elle est indépendante

du temps et du référentiel.

Application 1

Changement de référentiel pour E et B

176

Soit deux référentiels galiléens R et R’ . Désignons
par i la vitesse de R’ par rapport a R . Soit v et
v les vitesses dans R et R’ d’une particule chargée.
En traduisant qu’en mécanique newtonienne la force est
indépendante du référentiel d’étude, trouver les rela-
tions reliant les champs E* et B® dans R’ associés
aux champs E et B dans R, pour une position don-
née.

—

Sachant que v" = 2 + i, nous devons identifier :
Fio=qlE +@ +i)AB]
=q[(E+T AB)+v AB)]
avec Filo=qE +0'AB).
L’identification des deux expressions nous donne :
E=E+iAB et B=B .
Ces relations traduisent les effets d’'un changement de

référentiel pour les champs électromagnétiques dans le
cadre de la mécanique classique.




I.1.2. Comparaison avec la force gravitationnelle

La comparaison des forces électrostatique et gravitationnelle a ét¢ mentionnée dans
le chapitre 2, Application 1 : le rapport colossal obtenu justifie que nous négligions
par la suite les forces de gravitation (et donc de pesanteur).

I.1.3. Puissance
La puissance de la force de Lorentzest: P o=F1, .0 =qE. v .
Elle est nulle si le champ électrique est nul.

|1.2. Hypothéses d’étude

Considérons le mouvement de particules dans des champs E et (ou) B indépen-
dants du temps (ou trés exceptionnellement a variation temporelle suffisamment
lente pour que I'approximation du régime quasi permanent soit applicable (cf. cha-
pitre 7 § 1.2.).
Nous utiliserons une propriété des champs électriques indépendants du temps, a
savoir l'existence d'un potentiel scalaire V(M) tel que :

E=—grad V.

Remarque

La plupart des expériences et des exercices étudiés ci-dessous supposent la réali-
sation d’un vide poussé (pression inférieure a un pascal), ce qui élimine tout frot-
tement lors du déplacement des particules.

La relation fondamentale de la mécanique appliquée a une particule de masse m
et de charge ¢ s’écrit alors :

La masse m etlacharge ¢ interviennent par leur rapport % . I est donc inutile
de chercher a déterminer séparément ¢ et m par I’étude du mouvement.

Mouvement d’une particule chargée
dans les champs E et (ou) B

2.1. Champ E seul

2.1.1. Role accélérateur d’un champ électrique

Lorsqu’une charge ¢ se déplace dans un champ €lectrostatique E=—grad V,
elle subit la force : F =g E = — grad (¢V), qui dérive de I’énergie potentielle
%p = qV .

L’énergie mécanique €y = % m v? + qV se conserve et en deux positions M et

M, de la particule, il vient :
(M) =X (M) +2 L (vi-vy).

En supposant que la particule parte d’un point O de potentiel nul (potentiel de
référence) avec une vitesse nulle, son énergie cinétique en un point M est :

ExM)=-qV(M).
Cette particule possede une énergie cinétique exprimable naturellement en élec-
tron-volt (symbole : eV).

Remarquons que pour un électron (q=-e),il fautque V(M) >0 pour qu’il puisse
acquérir une vitesse.

10. La force de Lorentz
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1“. La force de Lorentz

Application 2

Energie et vitesse d’un électron

3

Sachant que 1eV=1,6.10" = J, calculer I’éner-
gie (en eV) et la vitesse d’un électron accéléré par
une différence de potentiel :

V=10kV.

L’énergie cinétique est €x =+e V=10keV
(g=—e=-16.10""Cet 1J=1C.1V).

La vitesse v = 4 2—eV , avec m=9,1.10‘31kg
m

est : v=1,88.105m.s*1.

Remarque
L’énergie de masse (théorie relativiste) de [’élec-
tron est donnée par € =mc g , Soit :

€ =511 keV environ.

Tant que le potentiel accélérateur est nettement infé-
rieur a 500 KV, la théorie classique est utilisable
pour le calcul de la vitesse.

2
Pour V =50KkV (énergie eV = %), les calculs

classiques et relativistes donnent respectivement :
Velassique = 1,33 108 m . s ™!

et Urelativiste = 1,24 . 108 m . s~ !

(erreur relative de T %).

Nous conviendrons que c’est la limite supérieure a

ne pas dépasser.

Des considérations semblables peuvent étre faites
pour le proton, mais son énergie de masse étant de
lordre du GeV (1000 MeV), le traitement classi-
que est permis avec des tensions beaucoup plus
importantes (en valeur absolue).
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2.1.2. Mouvement dans un champ électrique E uniforme
et indépendant du temps

Une particule passant a I’intérieur d’un condensateur plan subit une déviation pro-
portionnelle a la différence de potentiel entre les plaques du condensateur
(cf- I'Application 3) ; ce principe est utilisé dans un oscilloscope analogique.

B Principe de fonctionnement d’un oscilloscope analogique

)

écran

- %Vphotons

canon a €électrons
/\/\—’—\

7|

]
L

- @ - Fil

LH < Doc. 1. Oscilloscope :
l chauffé. @ : Wehnelt. @ : Electrode de

concentration ou de focalisation. @ :
Electrode d’accélération. ®) : Plaques
de déviation verticale. ® : Plaques de
déviation horizontale.

@ ® ©

Limitons-nous a rappeler succinctement la description du tube cathodique d’un
oscilloscope.
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10. La force de Lorentz

Dans le tube régne un vide poussé (p < 1074 Pa). Le pinceau électronique est pro-
duit par un canon a électron comportant un fil chaufté (1 000 K environ) a fort pou-
voir émissif en électrons, une électrode appelée wehnelt permettant de régler 1’in-
tensité du courant électronique, et des électrodes de concentration et d’accélération
(lentilles électroniques).

Les électrons traversent ensuite les plaques de déviations verticales et horizontales.
Quand les électrons traversent les plaques horizontales soumises a une différence
de potentiel Uy , ils sont déviés verticalement ; cette déviation était proportion-
nelle 2 Uy (cf: I’Application ci-dessous).

Application 3

Déflexion électrostatique
dans un condensateur plan

dv,
, , —=+ =0, donc vy=v(et x=vgyt
traversant ’espace entre les deux armatures d’un dt

Soit une particule de masse m et de charge q

condensateur plan ; la particule préalablement

(origine des temps prise au passage en O).
accélérée pénetre en O avec une vitesse initiale

— - dvy ¢ eU . eU
Vog=Vqé€y. —==F=—, soit yy:—t,
dt m md md
. Ay . leU 2 5
portion de parabole puis y=> —dt (tant que x < L). Dans I’espace,
m
entre les armatures, la trajectoire est un morceau de
P 1
parabole d’équation y= - € U2 x2.
m dl/o

En x =L (point P), la particule sort du champ

E etsa trajectoire devient rectiligne. La continuité
du vecteur vitesse en P :

o dx dy LeU
> = V=== | =ve et vy, == | == ——
A L < > dt P dt P dmvo

permet d'obtenir la pente de la trajectoire :

tan9=(dyj =£e—U2-
dx Jp dmuvj

Doc. 2. Déflexion électrostatique.

11 existe une différence de potentiel U = Vg — Vg >0

entre les armatures métalliques de longueur L et dis-
tantes de d. Nous supposerons que le champ élec-

U-

trostatique est uniforme et égal a E=—gey

dans I’espace entre les armatures, et nul ailleurs.

Déterminer la trajectoire d’un électron et le point
d’impact I sur un écran fluorescent placé a I’abs-

cisse x=D+ % , dans I’hypothese ou la particule ne

rencontre pas l'une des armatures du condensateur.

La relation fondamentale de la dynamique (mécani-

—

que classique) m 3—” =q E donne:
t

L’équation de la droite est donnée par :

L eU L L
== |x-= PI passe par =,01/.
Y dmv%( 2)( pasep Q(z D

Le point / d’impact sur I’écran fluorescent a donc

L eU
YI= - ——3 D |remarquons que
d mvo

pour ordonnée

yr_ D),
yp~ L/zj

Cette déflexion dépend de U (tension appliquée
entre les plaques de déviation) et de 1’énergie ciné-

tique + mv3
quezmvo

cules de méme charge et d’énergie cinétique initiale
identique subiront la méme déviation.

de la particule incidente : des parti-
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Il en est de méme pour la traversée des plaques verticales, la déviation horizon-
tale associée étant proportionnelle a la tension Uy appliquée entre ces plaques.

Sur I’écran la trace de I’électron (spot) traduit ces déviations :
X=K1 UH et Y=K2 U\/'.

Nous nous reporterons aux travaux pratiques pour I’utilisation de cette propriété.

» Pour s’entrainer : ex. |.

2.2. Champ B seul

2.2.1.Propriétés du mouvement dans un champ B stationnaire

Un électron mobile dans un champ magnétique B indépendant du temps (station-
naire) est uniquement soumis a la force magnétique F = g ¥ A B (souvent
appelée également force de Lorentz).

La puissance de cette force est nulle, car :
F.7=(qU AB).7 =0,
(produit mixte avec deux vecteurs colinéaires).

Le travail de la force magnétique F= qUA B qui s’exerce sur une parti-
cule est nul.
L’énergie cinétique de cette particule est constante (théoreme de la
puissance cinétique). La norme de sa vitesse au cours du mouvement est
constante :

d gK = =

—==F.v=0, donc &g=cte et v=cte.

dt

Remarques
«Si B dépend du temps selon B=B (M, t), la force magnétique ne travaille
toujours pas, mais il apparait (phénomene d’induction) un champ électrique
dont la puissance est en général non nulle. Une telle situation est exclue de nos
hypotheses d’étude.

o La puissance de la force magnétique est nulle mais ses effets ne le sont pas ; la
force magnétique dévie les particules chargées en mouvement et cela d'autant
fortement que leur vitesse est élevée.

2.2.2.Mouvement dans un champ B uniforme et indépendant
du temps

2.2.2.1.Cas général d’une vitesse initiale quelconque

Etudions le mouvement d’une particule (g, m) placée a I'origine O du triddre
trirectangulaire (O; x, y, z) al'instant initial =0 (vitesse initiale 7'j) dans
un champ magnétostatique B=B¢ ; (B>0) uniforme dans un domaine donné.
Posons Zg=vo(sin@.e,+cosa.€,).

La relation fondamentale de 1a dynamique appliquée au point matériel donne :

md—v=q17/\BZ"Z.
dr

Posons g=¢€e (¢=+1 pourun proton, et €=—1 pour un électron).

. eB s T )
Introduisons la grandeur @, = =— homogene a I'inverse d’un temps et que nous
m

appellerons pulsation cyclotron.
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ey

B =Bé,

7, (g, m)

Doc. 3. Mouvement d’une particule
dans un champ magnétique.
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Nous obtenons :

dvy dvy do,
T =EWVy, ——=-EQ: Uy et—=0.
dt dt t

B Mouvement projeté sur le plan (xOy)
En intégrant les deux premieres équations par rapport au temps, nous obtenons :

Vx=E@y+Vosina et Vy=—€W:X.
Il est possible de reporter v, et vy dans les équations précédentes et d’intégrer
a nouveau, mais il est aussi efficace d’introduire la variable & =x+1y qui repré-

sente [’affixe de la projection orthogonale du vecteur oM (vecteur position de
la particule) dans le plan (xOy) .

d . d . . .
Comme —5 =¥y +1vy,nous avons do =—¢eiw.& +vgsin a, dont la solution
dr dr
est:
LEVq . .
E=—i=Lsina+Aexp(—-iecwm.t).
a)C

Ar=0, £=0, donc A=i %%na et E=iE%sinaexp(~icwn)-1].

W, W
Les lois horaires sont donc :

EVqy . .
x(1)=—""Lsin ¢r sin (- EWt)

(4

y(t)=- % Gin o [1-cos(-ew1)].
(o

x et y vérifient x%+ (evo sin a+yj2= (yo sin 0{) : le mouvement projeté
W, W

dans le plan (xOy) est un cercle de centre C (xc=0 et yo=— £V0gin o) et

de rayon p = ZTO sin ¢ . Ce cercle est décrit avec la vitesse angulaire(i ea, égale

en valeur absollfe a la pulsation cyclotron.

B Mouvement suivant (0z)
La troisieme équation fournit :
vV,=cte=1v)Ccos &, Soit z=wv(cos ot
(mouvement uniforme parallelement a (Oz)). La particule décrit donc une hélice
circulaire.

a) y b) z

0| z Zysin

pas
de I’hélice

¢)

pas
de I’hélice

10. La force de Lorentz

=

e .
v, sin y

=¥

Doc. 4. Projection de la trajectoire sur les plans de coordonnées dans le cas
d’un proton.
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a)

Z

Doc. 5. Trajectoire d’un électron et d’un proton dans un champ B uniforme.

Remarque
. 2
Le pas de I’hélice est h=vycos aT, ou T= AL ZW% , donc :

wC
muv
h=27n =L cosax .
eB

Application

Une mesure précise de la charge spécifique
Le document 6 schématise une méthode expérimen-
tale trés précise de mesure de la charge spécifique
€ ) 4 e .
- de ’électron. Les électrons traversent un premier
diaphragme circulaire D | avec une vitesse initiale
U (tension V d’accélération) faisant un angle o
faible, mais variable avec I’axe (Ox) (grdce a un
condensateur soumis a une tension variable sur le
trajet des électrons incidents).

Apres Dy les électrons pénetrent dans un solénoide
S ou regne un champ magnétostatique longitudinal
uniforme B =B ..

U~ portion d’hélice

réguliere

A une distance L de D est placé un deuxieme
diaphragme identique D .

A quelle condition les électrons du faisceau pour-
ront-ils franchir D, ?

P ) e
En déduire une mesure possible de — .
m

La trajectoire des électrons entre D et D, estun
morceau d’hélice, et les conditions optimales pour
franchir D, sont obtenues lorsque L est un nom-
bre entier de fois le pas de I’hélice.

27w m vycos o

Soit L=n B

, ol n estun entier.

14 Sachant que cos o = 1 a l'ordre un en « et que
1 2 L. e 8n2V
- muvy=eV, nousendéduisons: —=————.
2 m n-L°B

e
Doc. 6. Une mesure de — .
m

Les grandeurs n, L , B et V étant accessibles a la

e P
mesure, le rapport — est déduit :
m

€ =(1,7586+0,0023). 10" C.kg """

m

2.2.2.2. Le cas particulier d’une vitesse initiale normale
au champ magnétique

Si la vitesse initiale 27y de la particule est normale au champ magnétique
B, (a = %) , cette particule décrit une trajectoire circulaire dans un plan ortho-

gonal a B, et contenant vy
» Pour s’entrainer : ex. 2, 3 et 4.
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2.3. Actions simultanées des champs E et B
Qualitativement, nous pouvons prévoir pour des champs uniformes E et B appli-
qués les propriétés suivantes.

2.3.1. Cas de champs paralléles

Si E et B sont paralléles, le projeté de la trajectoire sur un plan orthogonal aux
champs est toujours un cercle. En revanche, la composante de la vitesse parallele
aux champs est accélérée. La vitesse n’est pas constante et la trajectoire n’est pas
une hélice de pas constant.

2.3.2. Cas de champs E et B croisés

Si E et B sont croisés, le champ magnétique a pour effet d’incurver la trajectoire.
Les exemples suivants montre qu’il en résulte une dérive, c’est-a-dire un mouve-
ment « moyen » dont la vitesse est normalea E eta B.

2.3.2.1. Cas d’une vitesse initiale nulle

Awpplication J

)
NI
=]
1l
=)

z
Doc. 7. Champs E et B croisés.

la particule s’écrit :

m%:eﬁ+e5’/\§,soit d7

tions initiales.

La trajectoire est dans le plan (xQOy) puisque )

La relation fondamentale de la dynamique appliquée a

T =Wp ey — O e AV

d*z
=0
2

donne par intégration z =0, compte tenu des condi-

E et B croisé avec une vitesse d2 dy . d
. - CX_tw=2, soit L=y ;
initiale nulle — Vitesse de dérive dr? dr’ dr >
Une particule (q =+ e, m) se trouve a l'instant initial d2y dx . dy
N Yo s : J —=— =, + vy, SOIt — = —w(x-vpt) ;
al’origine O du repere trirectangulaire (O ; ey, ey, e;) dr? dt dr
ll;e au référentiel R galiléen, avec sa vitesse v'(0) nulle. ce qui donne :
Etudier son mouvement ultérieur en présence des champs a2y
; F-Ez ot B=B & £Y —_ 0y + wop=- 0*(y-Ry)
uniformes et constants E =E e, et B =B ¢;. a2 y D= y—=~Ro),
v 5 5
On posera a)c=%,vp=% et Ry= %=WD, soit y =Ry (1 —cos wt) et x =Ry (wt — sin wr) .
eB ¢ La courbe trajectoire est une cycloide représentée sur le
, document 8.
Y La vitesse de dérive de la particule est, par définition :
- de ., dy _ -
. <V >=<—7">e+<->e¢,=Rywe,=vpe,=vp.
B dr X dr y QWex D €x D
2R, Observons que la particule décrit une trajectoire circu-
| laire de centre G et de rayon R dans le référentiel %’
Ry en translation uniforme A la vitesse 7p= £ A B AzB par
A , rapport a R . B
T x Dans R’ le champ électrique E” est nul (formules de

changement de référentiel pour £ et B vues en
§ 1.1.1) : nous sommes donc ramenés au cas du mou-
vement dans un champ magnétique uniforme : B’=B.

06 09 12 15 18 x

Doc. 8. Mouvement d’un proton dans E et B croisés ;
v9=0.

0 03
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2.3.2.3. Mesure de %

2.3.2.2. Vitesse initiale quelconque

Une étude compléte montre la généralité de cette vitesse de dérive v =

. P . P . dv
En posant »” =2 —vp, nous obtenons I’équation d’évolution : m

. _EAB
DD=#.

EAB
BZ

>

=g/'AB.

dr

La trajectoire est circulaire dans le repere (8’) en translation a la vitesse #p dans
(R) contenant les champs E et B .

Une particule placée dans des champs EetB croisés, uniformes, et indé-
pendants du temps, subit une vitesse de dérive :

» Pour s’entrainer : ex. 7.

_. _.

avec croisés

A;n;vltcﬂtwn o

e
La mesure de —

m avec des champs

E et B croisés

Un faisceau monocinétique d’électrons traverse sans
déviation une région 9 de largeur a, on regnent des
champs magnethue et electrlque umformes constants
et orthogonaux : E = E ey et B=Bc¢,.

Le point d’impact sur un écran placé a la distance b
du centre Q de la région est alors 1.

1)

1)

© oM
Eyl
-

S

Doc. 9. Mesure de % avec des champs croisés.

Si on supprime le champ B, nous observons que le
point d’impact se déplace en I, de cote yj, surl’écran.
Montrer que la connaissance de E, B,
permet la mesure de % .

a, betys

La premiere situation correspond a 1’égalité rigoureuse
des forces électrique et magnétique qui annulent leurs
effets ; la vitesse vaut :
E
vo=UD= — .
0 D B

La seconde situation correspond a la déflexion dans un
champ électrique uniforme :

eka
yr=- b 5
mvj
L’élimination de »( entre les relations donne :
e E
e I .
mn abB?

La méthode suppose E et B connus (uniformes) et
le domaine % bien délimité, ce qui pose quelques pro-
blemes expérimentaux.

184

3 Applications diverses

. Notions sur les spectrographes de masse

Les propriétés des mouvements des particules (aprés ionisation) dans des champs E
etB sontutilisées pour mettre en évidence la présence d’isotopes dans un échantillon.
Etudions le principe d’un spectrographe destiné 2 trier les isotopes selon leur masse.
L’ exercice 6 propose un autre principe de spectrographe de masse utilisant la méthode
des paraboles.




3.1.3. Le spectrographe de Bainbridge

Awpplication 7

Le spectrographe de Bainbridge

Dans un tel spectrographe les ions (supposés ici posi-

accélérés sous une tension de valeur absolue U, tra-
versent d’abord un filtre de vitesse, pénetrent ensuite
dans un champ magnétique transversal uniforme
B = B¥,, puis décrivent un demi-cercle et viennent
impressionner la plaque photographique. La fente F
étant supposée tres fine, déterminer la distance sépa-
rant les traces rectilignes associées a deux isotopes.

Calculer la distance séparant les isotopes FK* et

Données: B=0,1T et U=10kV.

[ Um
FM=L#4)= 222 \/ =0 (&= 02894
tifs) sortant d’un ioniseur ou ils ont été préalablement AN. : L(39)=1,806... m et L(41)=1,852... m;

le nombre de chiffres significatifs ne peut pas étre pré-
cisé ici, mais la séparation des isotopes est nette.

MK sur la plague. détecteur

10. La force de Lorentz

ioniseur

filtre de vitesse [| |]

Les ions décrivent un demi-cercle de diametre : M

FM=2p= 2muy

, avec g=e.

Comme 1/2 m v(z) =eU, il vient, en posant m = A my

deux isotopes

ou my=1,672.10727 kg est la masse du proton : Doc. 10. Le spectrographe de Bainbridge.

@¢,

Yo

3.2. Un accélérateur de particule : le cyclotron

Le premier cyclotron, réalisé par Lawrence, accélérait des électrons. Actuellement,
les cyclotrons sont utilisés essentiellement pour I’accélération d’ions.

Nous nous limiterons a une description élémentaire de I’appareil (doc. 11) ; 1’étude
exhaustive des accélérateurs sortant du cadre de cet ouvrage.

3.2.1. Description

Un cyclotron accélérant des ions (des protons par exemple) comprend essentielle-
ment un cylindre d’axe (Oz) placé dans Ientrefer d’un €lectro-aimant, ol régne un
vide poussé. Un champ magnétique B = B '€, uniforme est appliqué sur tout le
domaine du cylindre de rayon R . Les parois de ce cylindre sont matérialisées par
deux électrodes conductrices creuses, appelées dees, séparées par une région de
faible épaisseur d, s’étendant de part et d’autre d’un plan contenant I’axe du cylindre.

Une source (non décrite ici) permet d’injecter les ions au centre avec une énergie
cinétique négligeable.
Un générateur applique entre les électrodes métalliques (dees) une tension sinu-

soidale de fréquence v, créant ainsi entre les dees un champ électrique uniforme
E variant sinusoidalement a la fréquence v :

E=E,cos2mvt) = % cos(2mvt).

A Tintérieur de chaque dee, le champ électrique est considéré comme nul.

Admettons que les ions sont accélérés une premiere fois par un champ électrique
E., surladistance d avant de pénétrer dans le premier dee.

a) z

dee ‘ dee

ol

b)

=N
Qe
\_/

u
Doc. 11. Le cyclotron.

a) vue latérale ;
b) les dees vus du dessus.
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3.2.2. Fonctionnement optimal

Quand un ion pénétre dans I’un des dees avec la vitesse v (supposé normale a (0z)
et aux faces des dees), il y décrit une trajectoire circulaire (donc un demi-cercle)

derayon p= ”L; , avant de retraverser I’espace entre les armatures, de largeur d.
q

La durée du séjour dans le dee, indépendante de la vitesse de la particule, est
At = g = a)l en posant @, = % (pulsation cyclotron des ions considérés). Si
C

cette durée est égale a la demi-période de variation du champ électrique (soit @, =2mv

B 21N N . N .
ou v= ;W)’ alors le champ E =— E,, accélere a nouveau les ions a la sortie du

dee.
Ainsi, a chaque demi-tour, le champ électrique fournit le travail optimal :
W=qgE,d =qU,
servant a accroitre 1’énergie cinétique de 1’ion.

Apres n traversées dans ces conditions, I’énergie cinétique de I’ion vaut :
muv
n

_1 - -
%K—zmvﬁ—an et p,= B

Lesrayons p, augmentent donc proportionnellement a vn . Le nombre de demi-
tours est limité par le rayon maximal des électrodes. Lorsque p, =R, un déflecteur
dévie les ions accélérés pour les utiliser dans une chambre d’étude (chocs, etc.).

» Pour s’entrainer : ex. 8.

4 Les électrons de conduction d’un métal

4.1. Modéle du mouvement d’ensemble

Un courant électrique est créé par un déplacement d’ensemble de charges dans un
référentiel R donné. Nous nous limitons au cas du déplacement d’ensemble des
électrons libres dans des métaux immobiles dans R, réalisant ainsi un courant appelé
courant de conduction.

4.1.1. Les électrons de conduction

Dans un modele classique, les charges mobiles (ou porteurs) dans les métaux sont
les électrons libres, encore appelés électrons de conduction (par opposition aux
électrons de valence liés aux ions du réseau et non susceptibles de se déplacer dans
tout le conducteur). Les électrons de conduction (en nombre par unité de volume
tres élevé), peuvent étre assimilés a un gaz dans tout le conducteur. De fagon plus
générale, nous appellerons porteur toute charge susceptible de se déplacer dans un
milieu conducteur.

Nombre d’électrons de conduction
par unité de volume

d’électrons de conduction par unité de volume.

Données : Masse volumique du cuivre p=8900kg . m™ ; s0it :
masse atomique du cuivre M = 63,6 g et nombre
d’Avogadro Np = 6,02 . 1023

Dans le cas du cuivre, chaque atome de cuivre fournit Le nombre n d’électrons de conduction par unité de
un électron de conduction. Calculer le nombre n, volume est donné par :

n=602.1023 8900 _g4 1028 m3 1029 m3,

5O




En I’absence de force appliquée, on admet que les vitesses u; des différents élec-
trons de conduction se distribuent de maniere aléatoire de sorte que la valeur

moyenne définie par 7=<1;>= ﬁ g\/ ; estnulle, ol SN représente le nombre

d’électrons de conduction contenus dans un élément de volume & 7.

Donc, en I’absence de champ électrique E appliqué (c’est-a-dire quand le conduc-
teur est équipotentiel) il n’existe aucun courant. En revanche, quand un champ élec-
trique est appliqué, la vitesse moyenne des porteurs, que nous appellerons vitesse
d’ensemble ou vitesse de dérive, n’est plus nulle.

4.1.2. Vitesse d’ensemble (ou de dérive) en présence d’une force
F appliquée aux porteurs

Nous considérons un conducteur dans lequel chaque porteur est soumis a une force
F (ayant pour origine, par exemple, un champ électrique). Pour simplifier, nous
supposons que tous les porteurs d’un volume mésoscopique sont soumis a la méme
force F . Appliquons le principe fondamental de la dynamique au systéme consti-
tué des porteurs d’un élément de volume mésoscopique &7, dont le barycentre
se déplace a la vitesse d’ensemble ¢". Le nombre de porteurs de ce systeme est
ON =n 87 (n représente donc le nombre de porteurs par unité de volume) et sa
masse est égale a nm d7. Nous obtenons donc :

nmér% =n6’L’F+6f

ou 6f désigne une force due aux interactions entre les porteurs mobiles de ce sys-
teme et le réseau immobile dans lequel ils se déplacent. Cette force s’oppose au
mouvement, et nous faisons 1’hypothese qu’elle est de la forme : & }7 =—kv0T
analogue a une force de frottement visqueux pour modéliser les collisions. Nous
en déduisons une équation différentielle vérifiée par 7 (¢) :

nm%—?:nﬁ—kﬁ,
) L npin - d7 _ 7 mv nm
ue I’on peut écrire : m &Y = F — 22 " avec 7= =% .
4 P dr T k

7 (homogene a un temps) est une grandeur caractéristique du phénomene étudié :
c’est le temps de relaxation de conduction.

Pour interpréter simplement ce temps 7, supposons que nous appliquions une
force F' uniforme et constante a compter de la date initiale #=0. Supposons, en
outre, qu’a cette date #=0, la solution de I’équation précédente serait :
=1 t

~— I't T .

v= 4 (1 -e ) ;
7 traduit donc un ordre de grandeur du temps d’instauration d’un régime perma-
Fr

m

nent donnant une vitesse d’ensemble 7= proportionnelle a F.

4.1.3. Le modéle des collisions

Seule la mécanique quantique permet de décrire de fagon réellement satisfaisante
le comportement des électrons de conduction dans un métal. Nous pouvons cepen-
dant justifier I’existence de la force de « frottement » en — k # a partir d’'un modele
simplifié ou les porteurs sont assimilés a des particules libres qui subissent des col-
lisions.

4.1.3.1. Les hypothéses du modeéle

¢ Les porteurs ont un mouvement désordonné (agitation thermique) et subissent
des collisions sur des sites (immobiles) du réseau dans lequel ils se déplacent.

10. La force de Lorentz
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* Entre deux collisions, un porteur n’est soumis qu’a la force F que nous suppo-
sons ici constante et uniforme. Si la force F est due a un champ électrique appli-
qué, cette hypothese revient a admettre que nous pouvons remplacer E par sa
valeur moyenne (nivelée).

* La valeur moyenne de la vitesse des porteurs juste apres une collision est nulle.
Cela revient a considérer que, en moyenne, les vitesses apres un choc ont une répar-
tition isotrope.

4.1.3.2. Vitesse moyenne des porteurs

Etudions le mouvement d’un porteur de masse m 2 partir d’une collision qui a lieu
aladate t=1#y. Ilaune vitesse initiale #"; dont, par hypothese, la valeur moyenne
(prise sur un grand nombre de collisions) est nulle.
D’apres la relation fondamentale de la dynamique : m
Intégrons cette équation différentielle vectorielle : _

m[F(t) - Tl =—eE(t—ty) soit: 7(t)=7p+ L (t—19).
Calculons la valeur moyenne <> de v'(f) pour les porteurs d’un volume méso-
scopique. —

<U>=<vp>+ % <t-—ty>.

* Par hypotheése <7y>= 0.
* < t—1g> représente la durée moyenne écoulée depuis le dernier choc. C’est une
quantité constante dans le temps que nous notons 7. Un modele statistique simple
pourait montrer que 7 représente aussi la durée moyenne entre deux collisions.

—

T

m
Le « gaz de porteurs » a donc, en moyenne, une vitesse de dérive < 7" > qui se
superpose a la vitesse d’agitation thermique aléatoire et de valeur moyenne nulle.

Finalement, nous obtenons avec ce modele : <77 > =

4.2. Vecteur densité de courants de conduction

Rappelons la définition du vecteur densité de courant j (cf. chapitre 6) :

* A un mouvement de porteurs de vitesse moyenne 7" non nulle on associe
un vecteur densité de courant j =r g7 ou n représente le nombre de por-
teurs par unité de volume et ¢ la charge de chacun de ces porteurs.

* L’intensité Ig(¢) qui traverse la surface S ala date ¢ est donnée par le
flux du vecteur densité de courant a travers S (doc. 13) :

Ig(t) = HS j @®.dS.

On peut vérifier que I(¢) est bien la charge traversant S par unité de temps.

En multipliant par ng les deux membres de I’équation différentielle en 7~ établie
au § 4.1.2. nous obtenons I’équation différentielle vérifiée par 7 en présence d’une
T

force appliquée F: 7
ppliqu ar

nqgTt = ,. .
—m— F (équation de transport).

4.3. Comportement d’ensemble en présence
d’un champ électrique seul

4.3.1. La loi d’Ohm locale

Dans ce qui suit, nous expliciterons les propriétés de notre modele dans I’hypo-
these d’un milieu homogene (n est supposé uniforme), en présence d’un champ
électrique E supposé localement uniforme et constant (donc F = qE ), appliqué
a compter de la date =0, pour laquelle on avait v’ = 0 et donc j= 0.

‘_;y/

Doc. 12. Trajectoire d’un électron entre
deux collisions en présence d’un champ
électrique.

La vitesse instantanée, due a l’agi-
tation thermique, est beaucoup plus
grande que la vitesse de dérive (ou
vitesse moyenne).

Si nous adoptons le modele des gaz
monoatomiques, nous trouvons une
vitesse d’agitation de [’ordre de :

_ ./ 3kBT _ 05
u= T~10 m.s.

La vitesse de dérive est classique-
ment de I’ordre de 10> m.s™!.

Doc. 13. Conducteur cylindrique.




Pour #>0, une intégration immédiate de I’équation d’évolution de 7" et de I’équa-
tion de transport, donne :

qT —

2
ng
m E

) E (1 —-c %) .

Le temps de relaxation de conduction 7 esten général tres faible (7 del’ordre de
10714 5). Cela signifie que pour ¢ supérieur & 7, donc en pratique pour >0,
I"état (cf: I’Application 10) permanent est atteint. D’ou la loi d’Ohm locale :

2
(]'L'—- - llqr_’
m E et j=—pp—E.

(1 -c %) et donc j*=

7=

7=

Ces relations sont en fait valables en régime quasi stationnaire, pour lequel les varia-
tions temporelles éventuelles de E sont lentes (durées typiques de variation net-
tement plus élevées que 7).

La vitesse d’ensemble (ou de déri_ye) des particules (g, m) participant a la
conduction est donnée par v'= uE ; u désigne la mobilité de ces particules
(u=q L ). Pour les électrons, f=-e.T est négatif.

Loi d’Ohm locale :
Le vecteur densité volumique de courants j (s’exprimant en A . m2) est
proportionnel au champ électrique appliqué au conducteur :

J?= YE,
¥ désigne la conductivité électrique du milieu (dit ohmique), dont I’expres-
sion est donnée par ¥ =n ¢2 % (7 voisin de 10714 s),

L’inverse de la conductivité p= % est la résistivité. La conductivité s’éva-

lue en S.m~! et la résistivité en Q. m.

4.3.2. Résistance d’un conducteur filiforme cylindrique

Considérons un conducteur filiforme cylindrique, homogene, de section s, de lon-
gueur € etde conductivité y (doc. 13). Un courant continu d’intensité / traverse
ce conducteur dans le sens de ’axe (Ox) quand une d.d.p. continue U (U>0) est
appliquée entre ses extrémités.

Le déplacement des porteurs est « canalisé » par les parois du conducteur. Il s’en
suit que le vecteur densité de courant j est en tout point parallele a (Ox).

—

E = L j estun champ électrique dont les lignes de champ sont toutes paralleles

a (Ox) dans une région globalement neutre. On en déduit (c¢f. Application 9) que
E et j sont uniformes dans le cylindre : E=Ee, et j =je,= yEe,.

En régime permanent, I’intensité / a la méme valeur a travers toutes les sections

du conducteur : N
I= HS j.dS=yEs.

Exprimons / al’aide du potentiel V(x) associé au champ E:

dv
I=—ys 4V
rs dx
I étant indépendant de x, cette équation différentielle s’integre simplement :
X X
[Fav=-f[Par wou: v=vi-v= 15
X] X|

Nous en déduisons la valeur de la résistance du conducteur :
R= U_«¢ £

[~ Ps

10. La force de Lorentz

Un conducteur est un milieu globa-
lement neutre a I’échelle mésosco-
pique.

Pour un conducteur métallique, la
charge des électrons de conduction
est exactement compensée par la
charge opposée des ions positifs
immobiles.

Pour une solution électrolytique,
chaque élément mésoscopique
contient des ions positifs et négatifs
dont les charges s’équilibrent.
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Application F

Champ paralléle

Soit un champ électrostatique de la forme :
E=E(x,y,2) .

1) Montrer que E ne peut dépendre que de la
variable x .

2) Montrer que si le milieu est globalement neutre,
E est uniforme.

1) Les lignes de champ de E sont des droites paral-
leles ; les équipotentielles sont les surfaces ortho-
gonales a ces droites ; le potentiel ne dépend donc
que de x.

On en déduit :

2) Dans une région neutre le flux de E alaméme
valeur a travers toute section d’un tube de champ.
Or, les tubes de champ sont des cylindres de section
droite constante S .

On en déduit : E(x)S=E(xp)S

et donc : E indépendant de x .

soit: E =E(x) .

Conclusion : le champ E est uniforme.

plication 70

Les ordres de grandeur de la conduction
électrique dans le cuivre

Dans le cas du cuivre, en admettant que chaque atome
fournit un électron de conduction en moyenne, la
conductivité électrique obtenue par mesure de la
résistance d’un trong¢on cylindrique de longueur €
et de section s (R = W) est y=06. 107 S~ L.om!.

On suppose qu’un courant d’intensité 1 A circule

dans un fil cylindrique de section s =1 mm? .

Déterminer :

a) la norme du vecteur densité de courants, supposé
uniforme et celle du champ électrique ;

b) le temps de relaxation de conduction T dans le
cadre de notre modele ;

¢) la vitesse d’ensemble v (ou de dérive) et la mobi-
lité des électrons de conduction ;

d) la norme u de la vitesse moyenne d’un électron
entre deux chocs, sachant que le libre parcours
moyen (distance moyenne parcourue entre ces deux
chocs) est A =45nm.

Commenter ces valeurs.

Données :
Masse volumique du cuivre p = 8,9. 103 kg .m=3,
masse atomique du cuivre M = 63,6 g, nombre

d’Avogadro N =6.10%3  masse d’un électron m
=9.1031 kg .
a) j étant uniforme I =js, donc:

j=1 =105A.m2

et: .

E=% =167.102V.m".
b)y=ne? % domne 7= "1 ;
) y=ne“ 3 donne ol

N
n=p WA =84.108 m3, donc 7=2,5.10"14s.
¢)j=—ne7 fournit:
v= % =7,4.10° m.s' =0,074 mm.s™!

(vitesse tres faible qui correspond a un mouvement
d’ensemble de 4,4 mm par minute). La mobilité est :

U=-e L =-44.103C.s.kg!.
Nous vérifions que 7' = E.
d) Avec A =u T, nous obtenons :

u= % =1,8.100m.s!

(valeur nettement supérieure a »). D’autre part, nous
remarquons que A est nettement supérieure a la
dimension de la maille du cristal, typiquement de
I’ordre de quelques dixieémes de nanometres.
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4.4. Présences simultanées d’un champ électrique
et d’'un champ magnétique

4.4.1. L’équation de transport et la constante de Hall
En présence simultanée d’un champ électrique E etd’un champ magnétique E,
la force F responsable du mouvement d’ensemble des porteurs est :
F=q(E+7AB).
L’équation de transport s’écrit alors :
Td—]+f=7(E+7AE);
dr
soit encore :

ol Ry= % est la constante de Hall.

En régime stationnaire ou quasi stationnaire, c’est-a-dire lorsque le terme 7 %
est nul ou négligeable), le vecteur densité de courant s’établit a :
J=7E+RyjnrB).
La généralisation de la loi d’Ohm locale, lorsque le conducteur est placé en
présence simultanée d’un champ électrique £ et d’un champ magnétique
B, sécrit : _ - -
J=YE+RgjrB),
ou la constante de Hall Ry est égalea ; q-

Ces équations permettent d’interpréter 1’effet Hall que nous allons décrire mainte-
nant.
4.4.2. Cas d’une géométrie filiforme et rectangulaire

4.4.2.1. Le champ de Hall

. z
B
R T y
— 20 A&
j o+ o+ o+ o+ + o+ TR
*(—E) _
— ///’ x
I /, = S b
. /_ Ev @ Ky Uy=V,y-V,
U
B
—ev
ﬁ:—eﬂ/\l?

Considérons un ruban conducteur de longueur a selon (Ox), de largeur b selon
(Oy), d’épaisseur ¢ selon (Oz), placé dans un champ magnétique uniforme
B =Be, (B>0). Une tension continue U, appliquée entre les faces du conduc-
teur orthogonales a (Ox), fait circuler un courant continu d’intensité I et de den-

sité de courant uniforme j = é ey .

10. La force de Lorentz

< Doc. 14. Effet Hall en géométrie
parallélépipédique (géométrie de Hall).
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L’expérience montre, qu’en régime établi, il apparait une tension Uy , dite fen-
sion de Hall, entre les faces du conducteur orthogonales a (Oy). Quantitativement,
cette tension de Hall Uy est proportionnelle au courant / et a la norme du champ
magnétique B .

4.4.2.2. Interprétation physique

1l est aisé de comprendre 1’origine de la tension de Hall en examinant le régime
transitoire qui précede le régime établi décrit ci-dessus.

H Régime transitoire

Pendant le régime transitoire, tout électron de conduction (g = — e) subit :

a) une force électrique gEy =—e % e, qui tend 2 le déplacer dans le sens des x
décroissants ;

b) une force magnétique ¢ 7 A B=—e(-vey) A (Be)) =—e vB ey qui tend a le
déplacer vers la face @.

Ainsi, sous I’effet de la force magnétique, les électrons de conduction se dirigent
et s’accumulent sur la face @ qui se charge négativement tandis que, corrélati-
vement et par défaut électronique, la face @ se charge positivement (doc. 15a).
Ces charg_qs surfaciques vont, comme dans un condensateur plan, créer un champ
de Hall Ey dirigé delaface @ verslaface @ . Déslors, les électrons de conduc-

tion seront soumis & une troisieme force ¢ Ey; , dirigée selon (Oy) qui tend a
compenser les effets de la force magnétique.

Au cours du régime transitoire, la norme du champ de Hall croit par un effet cumu-
latif et les électrons seront de plus en plus faiblement déviés vers la face @ .

A la fin du régime transitoire, la force électrique de Hall ¢ £y compense exacte-
ment la force magnétique g 7' A B et les électrons ne sont plus déviés latéralement
(doc. 15b).

H Régime établi
En régime établi, les lignes de courant sont colinéaires a I’axe (Ox) et le champ
de Hall est déterminé par la relation :
Eq+7AB=0.
En explicitant le champ de Hall, il vient :
Eq=-7AB=-(-vey) n (Be;)=-Bue,
soit encore :

Eq=- s Bjg.

En introduisant la constante de Hall Ry = ﬁ =- ,TIG (R <0), le champ de Hall

s’établit, en définitive, a : _

Eq=RyBjey=RyBAj .
Latension de Hall Uy s’obtient en intégrant la relation Ey=— %—‘: ou V estle
potentiel créé par le champ de Hall. Il en résulte que : ’

vy %
Uy = f dV:—RHjbe dy
d’ou finalement :
Uy=Va-Vi=-RyBjb=-Ry BL (>0)
en accord avec 1’expérience.

Dans le cas de I’argent n=6. 1023 m=3. Pour ¢c=0,1mm, B=1T et I=5A,
nous obtenons Uy =52 uV .
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Doc. 15. Origine du champ de Hall.




Cette valeur est tres faible : il faut I’amplifier pour une mesure précise. En fait, le
phénomene est facilement observable avec des matériaux qualifiés de semi-conduc-
teurs, pour lesquels le nombre n par unité de volume de porteurs de charges qui
participent 2 la conduction est nettement plus faible (105 a 10° fois plus faible). Il
est courant d’utiliser de telles sondes a semi-conducteur pour la mesure d’un champ
magnétique, par exemple en travaux pratiques.

Remarque

Nous avons envisagé un métal avec ses électrons de conduction. Il est possible d’ima-
giner une conduction par charges positives (qualifiées de trous dans les semi-conduc-
teurs) (doc. 16).

Pour un courant 1> 0, ces charges positives se déplacent également, sous [’effet
de la force magnétique, vers la face avant @, pendant la phase transitoire. La ten-
sion de Hall est alors de signe opposé a celle obtenue avec des électrons.

Le signe de la tension de Hall peut renseigner sur celui des porteurs de charges.
1l faut toutefois étre tres prudent dans ces interprétations, en n’oubliant pas que le
modeéle proposé est trop simpliste pour lui accorder un crédit illimité.

4.4.3. Champ de Hall et force de Laplace

4.4.3.1. Le modeéle volumique

Reprenons le ruban métallique parcouru par un courant d’intensité I, en présence
d’un champ magnétique, et intéressons-nous a la force s’exercant par unité de
volume sur ce conducteur supposé au repos dans un référentiel R .

Dans un volume élémentaire d7, nous avons des charges mobiles (n par unité de

volume) et des charges fixes (également n par unité de volume). Etudions les forces
s’exercant sur ces charges (doc. 17).

forces par unité de volume
charges il il influence de B résultante
E=Ey+Eyqy
. = = = = —neEq car
h bil —-ne(Ey+E -ne v AB = LT
charges mobiles ne(Ey H) n Fy+7AB=0
Charges fixes +ne(EO +EH) 0 +ne(fo +EH)

Pour un élément de volume d7, nous avons donc :
dF =neEgdr.
Sachant que Ep=RyB Aj,avec Ry=— % , nous obtenons :
dF =j A Bdr,
c’est la force de Laplace. Elle représente la résultante des forces électromagné-
tiques sur un élément conducteur.

La force de Laplace a laquelle est soumis un élément conducteur de volume
d7 parcouru par un courant de vecteur densité j, placé dans un champ
magnétique B est: dFy, = j ABd7.

4.4.3.2. Généralisation

Nous admettons que 1’expression de la force de Laplace est conservée lorsque
I’é1ément de conducteur est en mouvement de translation dans le référentiel
galiléen R .

10. La force de Lorentz

o+ o+ o+ o+ o+ 4 ﬂ a)
® |Uy>0
—_—
I
_eEH porteurs
. > J? de charge
Ey v B <> | négatifs
L = (g=-¢)
-evAB
- - - - - - =/ b)
Uy<0
_—
1
gE porteurs
N . ; de charge
Ey B v — | positifs
I (g>0)
qu AB
+ + + + + + + ‘\

Doc. 16. Inversion du champ de Hall
(et de la tension de Hall) en fonction
du signe des porteurs de charge.

<4 Doc. 17. Détail des forces par unité
de volume. E représente la compo-
sante de E parallélea | et le champ
électrique total est égal a :
E=Ey+Ey.
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Lorsque la modélisation volumique utilisée est remplacée par une modélisation — a)
linéique de courant (fil de section négligeable parcourue par un courant d’inten-
sité 1) , il suffit de remplacer j dz par Id€ (élément de courant de méme dimen-
sion) de sorte que la force de Laplace a laquelle est soumise un tel élément est :
dF a= 1d€AB. dF,, ;=10\ B
C’est la formulation historique de la force de Laplace.

La force de Laplace alaquelle est soumis un élément de courant 7 dé placé ) R
dans un champ magnétique B est : I

dFy, =1 dlAB 5
et pour une portion de circuit :

— B = = ;
F= f 1d{AE. fa¢
: A
La résultante des forces s’exercant sur un circuit fermé placé dans un
champ magnétique uniforme est nulle. b)
Doc. 18. a) Force de Laplace sur un élé-
En effet : ment de courant filiforme.
— L N - - b) Force de Laplace s’exercant sur la
F=¢I1d€AaB = (fldf) AB =1 (ﬁdfi )/\ B =0, portion de circuit AB .
circuit cireult circuit
car ¢ d =0.
circuit
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Sas e C O F Ry

@ La force €lectromagnétique subie par une particule de charge ¢ et de masse m, se trouvant, a ladate 7, au
point M du référentiel galiléen R, en présence d’un champ électrique E(M, t) et d’un champ magnétique
E(M, 1), et se déplagant a la vitesse v (M, t),q est donnée par :

FLo=q[EM, t)+7 (M, t)g n BIM, 1] .
Dans le cas de champs permanents et indépendants du temps, nous avons :
Fio =q(E +7 A B).

@ Le travail de la force magnétique F = g 7 A B qui s’exerce sur une particule est nul. L’ énergie cinétique de
cette particule est constante (théoreme de la puissance cinétique). La norme de sa vitesse au cours du mou-
vement est constante :

déy = _.
T =F.7=0, donc €ég=cte et v=cte.

® CHAMPS E ET B CROISES

Une particule placée dans des champs E et B croisés uniformes et indépendants du temps, subit une vitesse de
dérive : -

E AB
B

y_bz

@ MOUVEMENT D’ENSEMBLE

* Un mouvement d’ensemble de charges est un courant électrique, dont le vecteur densité volumique de courants
j estdéfini par j =n g v, ot n représente le nombre de porteurs mobiles par unité de volume et ¢ la charge
de chacun des porteurs.

* L’intensité I qui traverse une surface S aladate 7 est donnée par le flux du vecteur densité de courants a tra-
vers S a cette date, défini par :
I= f f i.ds .
</

@® LA LOI D’OHM LOCALE

* La vitesse d’ensemble (ou de dérive) des particules (g, m) participant a la conduction est donnée par 7" = ,uE ;

L désigne la mobilité de ces particules (i = g % ). Pour les électrons, yu=-e % est négatif.

* Le vecteur densité volumique de courants j (s’exprimant en A.m™2) est proportionnel au champ électrique
appliqué au conducteur j = yE , y désigne la conductivité électrique du milieu (dit ohmique), dont I’expression
est donnée par y=n ¢? nlz (7 voisin de 10714 s).

* Linverse de la conductivité p= % est la résistivité. La conductivité s’évalue en S.m™! et la résistivité en Q.m.

* La généralisation de la loi d’Ohm locale, lorsque le conducteur est placé en présence simultanée d’un champ
lectrique E et d’un champ magnétique B , s’écrit j = YE + Ry (j A B), ou la constante de Hall Ry est
égale a L

@ FORCE DE LAPLACE

* La force de I:aplace a laquelle est soumis un élémegt condugteur d?. vol_upe d7 parcouru par un courant de vec-
teur densité j, placé dans un champ magnétique B est dFy, = j A BdT.

* La force de Laplace a laquelle est soumis un élément de courant [ (11; ¢ placé dans un champ magnétique B est
donnée par dFy,=1d€ A B, et pour une portion de circuit F = fA 1d€AF.

* La résultante des forces s’exergant sur un circuit fermé placé dans un champ magnétique uniforme est nulle.
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Contrite rapide

¢ Donner I’expression de la force de Lorentz en indiquant les unités des grandeurs qui y figurent.

v’ Quelle est la puissance de la force de Lorentz ?

v’ Quelle est la nature de la trajectoire d’une particule chargée dans un champ électrostatique uniforme ?

¢’ Quelle est la nature de la trajectoire d’une particule chargée dans un champ magnétostatique uniforme ?

v’ Quelle est la vitesse de dérive 1y d’une particule ?

v’ Quel est le principe de fonctionnement d’un cyclotron ?

¢ Quand seul un champ électrostatique est appliqué, quelle est I’expression de la loi d’Ohm locale ?

v’ Quelle est I’expression de la résistance R d’un conducteur filiforme de longueur €, de section s et de conduc-
tivité y?

v’ Comment se généralise la loi d’Ohm locale quand un champ magnétostatique se superpose a un champ €lectro-
statique appliqué ?

v’ Pouvez-vous décrire I’effet Hall ?

Du tac au tac (Vrai ou faux)

I. Laforce magnétique est sans effet surle vecteur 5, La constante de relaxation de conduction 7 d’un
vitesse. milieu conducteur est de ordre de 1073 s.

Q Vrai Q Faux Q Vrai Q Faux

2. La déviation électrostatique par les plaques d’un 6. Dans un conducteur, la vitesse d’ensemble des

condensateur plan est proportionnelle a la ten- porteurs est de Pordre de quelques millimeétres
sion U appliquée et inversement proportion- par m"“fte» meme en presence d’un courant
nelle a ’énergie cinétique €k de la particule. de forte intensité.

. O Vrai 4 Faux
Q Vrai O Faux

7. La mobilité y des porteurs est une quantité
3. En variant les expériences utilisant la force de algébrique.

Lorentz, il est possible de déterminer la charge Q Vrai O Faux

q d’une particule et sa masse m. |
8. La constante de Hall Ry = g est toujours
H= ng )
négative.

QO Vrai 1 Faux

3 Vrai O Faux

4. Méme en P’absence de force appliquée, les por-
teurs d’un milieu conducteur sont mouvement
d’agitation thermique et leurs vitesses moyennes
ne sont pas nulles.

9. Compte tenu de la trés faible valeur de la tension
de Hall dans les rubans métalliques, I’effet Hall
ne conduit a aucune application pratique.

3 Vrai O Faux O Vrai 1 Faux

P Solution, page 200.




Exercices

10. La force de Lorentz

.7

Focalisation d’électrons par un champ

électrique
y N
7y
A a

[0 4 >
7 AB=1L B\ x

canon a

électrons

Des électrons, préalablement accélérés par une tension
V=10kV , pénetrent par la fente A supposée tres fine dans
une région ol régne un champ électrique uniforme E =FE E; .
On désire recueillir ces électrons a travers une fente B prati-
quée dans le plan opaque (xOz), ala distance AB=L=20,0cm
de A.

On peut régler ’angle o que fait le vecteur vitesse v des
électronsen A avec I’axe (Ax), ainsi que la norme et le sens
du champ électrostatique E . Le vecteur 7 est supposé paral-
lele au plan (xOy) .

1) Quelles sont les valeurs optimales 4 donner 2 o eta E
pour réaliser la focalisation de ces électrons, sachant que le

faisceau incident présente une faible dispersion angulaire Aoz ?

Aa . Aa
) ,a0+2 )

2) La largeur de la fente placéeen B étant AL=2 mm, don-
ner un ordre de grandeur de la dispersion angulaire Ao accep-
table pour ne pas atténuer sensiblement I’intensité du faisceau
d’électrons étudié.

(o appartient a [ao—

m avec montage utilisant

% Mesure de S
des bobines de Helmholtz

Dans le montage suivant, les électrons préalablement accélé-
rés par une différence de potentiel V =2,5kV , décrivent
dans I’ampoule ol régne un vide poussé une trajectoire cir-
culaire de rayon p=3,27 cm .

Le champ magnétique créé par les bobines, en géométrie
d’Helmholtz, est quasi uniforme et sa valeur numérique égale
a 5,12mT.

En déduire le rapport <.

trajectoire
R d’un électron

ampoule dans
laquelle regne
un vide poussé

\/¥ deux « spires »

| . .
en configuration

R d’Helmholtz

S

... Déflexion magnétique

Des électrons pénetrent en O , avec une vitesse vp= ey ,
dans un domaine 9 de largeur L, ol régne un champ magné-
tique B =B e, uniforme et constant. On admettra qu’ailleurs
le champ magnétique est nul. On suppose la largeur L du

domaine telle que :
mvg

vy _ . oL _eBL
B =p, soit —== Moo

0 <<1.

L <<

Sl

Un écran (E) fluorescent a été placé a la distance D +
dupoint O (Xg=D + %).

1) Déterminer I’ordonnée yp dupoint P ou I’électron quitte
le domaine 9 , ainsi que ’angle o que fait avec (Ox) la
vitesse de 1’électron en ce point.

2) En déduire la position du point d’impact I sur I’écran.

3) Vérifier que le support du vecteur PI passe tres pres du
i

point O d’abscisse 7

Données : L =1 cm ; tension accélératrice V=10kV ;
B=3mT et D=20cm.

dans les hypotheses d’étude.

C ®B=B¢,

arc de cercle
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Exercices

4‘ . Mouvement d’une particule chargée
dans un champ magnétique
en présence d’une force de frottement

Une particule de charge g =e et de masse m , initialement
en O avec une vitesse 7= ey , se déplace dans un milieu
fluide, dans une région de I’espace ol régne un champ magné-
tique uniforme :

B=B¢, .
Cette particule subit une force de frottement qu’on supposera
de la forme :

Frow=—kv (k constante positive).
Décrire le comportement de cette particule. On pourra intro-

duire une constante de temps 7 et la pulsation cyclotron
0= % . Il est suggéré de prévoir d’abord ce qui va se pro-

duire, puis d’envisager si possible un traitement numérique
de la question, et enfin un traitement analytique.

. Protons dans des champs E et B
paralléles

Des protons sont émisen O par une source quasi ponctuelle,
avec une vitesse initiale 7 = zgey . Etudier leur mouvement
ultérieur en présence de champs électrique et magnétique uni-
formes :

E=E& et B=Bé, avec E>0 et B>0.

=
S

X

Montrer qu’en placant judicieusement des diaphragmes dans

le plan (xOz) on peut mesurer le rapport

tons.
Comment varie 1’angle que fait le vecteur vitesse avec I’axe
(Oz) , en fonction de la position du diaphragme ?

S

— La méthode des paraboles

pour les pro-

Des ions positifs de masse m et de charge ¢, animés d’une
vitesse 7y = ype; , pénetrent dans une région de largeur L ou
régnent des champs E = E ey et B=-B ey uniformes et
constants (E et B positifs).

Supposons que la distance L soit nettement inférieure a
my

qgB
déflexions imposées par les champs E et B .

et faisons une étude (avec cette approximation) des

Déterminer le point d’impact / de la particule sur un écran
fluorescent placé a la distance D du point Q milieu de la
région ou régnent les champs E et B .

B |E 1

2

g
Un faisceau monocinétique de protons, d’intensité 7=0,25 A,
traverse sans subir de déviation une région % de I’espace ou
régnent des champs E et B uniformes et constants, trans-
versaux et croisés (F . B = 0).

Ce faisceau est ensuite absorbé par une cible métallique reliée
au sol. Déterminer la force moyenne subie par la cible.
Données : E=150kV.m™ et B=30mT.

Protons sur cible

E

cible

®B

ﬂ
v

domaine o
— - .
E et B existent

§w. Mouvements d’un proton
dans des champs E et B croisés
Un proton pénetre en O avec une vitesse initiale négligeable

(donc supposée nulle) dans une région de I’espace ou régnent
des champs E et B donnés par :

F:Eocos(a)lt)?y et E:BE’Z.



10. La force de Lorentz

Ey et B sont des constantes
positives, de méme que @ .

(eEO)
On posera a = {—,,~
et o= % o E

1) Apres avoir vérifié que le
mouvement est décrit dans le
plan (xOy), établir les équa-
tions différentielles du mouve-

|

ment.

2) Envisager une résolution numérique ou analytique de ces
équations. En posant @; =n @ étudier le comportement de
la trajectoire dans les cas limites n<< 1, puis n>> 1.
Que prévoyez-vous pour n =1 ? Le vérifier en cherchant une
solution de la forme y= ¢ sin (@t) .

2_,. Mouvement d’une particule chargée dans
un champ magnétique avec frottement

Une particule de charge g >0
etde masse m se déplace dans
un milieu ou elle subit une force
de frottement de la forme :

F=—k*L,
avec k positif, en présence
d’un champ magnétique uni-
forme et constant, normal a la
vitesse g initiale de la parti-
cule.

1) Montrer que la norme de la vitesse de la particule décroit
au cours du temps. La vitesse nulle est-elle atteinte au bout
d’une durée finie ou non ?

2) Controler éventuellement les résultats par une étude avec
ordinateur.

/LQ Vitesse de dérive

Une particule de masse m et de charge ¢ (positive) est
mobile dans un champ magnétique invariant au cours du

temps, mais présentant une inhomogénéité en y =0 . Les
lignes de champ magnétique sont paralleles a ’axe (0Oz) ; le
champ magnétique dépend de y selon la loi :

B (y<0)=Bye.
et B (y>0)=(By+AB) 2,
avec By>0 et AB>0.
On se limite au mouvement de la particule dans le plan (xOy).
On suppose qu’a 7=0, la particule est en O , avec une
vitesse 7 = vpey
Etudier le mouvement de dérive de cette particule.
Que se passe-t-il si g <0 ?

-11 Electron émis par un fil cylindrique

Un conducteur cylindrique
tres long, d’axe (Oz) et de
section circulaire de rayon a,
parcouru par un courant d’in- !
tensité I, crée en un point M '
repéré par ses coordonnées
cylindriques (7, 6,z) un champ a
magnétostatique donné par :
B = (M_OI) eg (r=a).
2nr NP
Il existe une probabilité non ]
nulle pour qu’un électron soit V L 0
émis par ce fil, avec une :
vitesse initiale que I’on supposera radiale.
Btudier le mouvement de cet électron, et déterminer en parti-
culier la distance maximale a laquelle il peut s’€loigner du fil.

el LRy

<

Y ol

7

/L% Focalisation d’un faisceau d’électrons dans
un condensateur cylindrique

Un condensateur cylindrique est formé de deux armatures
métalliques cylindriques, de méme axe (Oz), et de rayons
respectifs a et b,avec a<b.

Ces armatures sont portées aux potentiels respectifs V,, et
Vy, ,avec V>V, et on admet que le champ électrostatique
régnant dans I’espace entre les armatures est donné par :

vV, -V
avec A= -2 ¢

i)

In (a

en coordonnées cylindriques (r, 6, z) d’axe (Oz) .

En fait le dispositif décrit ici, permettant une détermination

expérimentale de (%) , comporte un trongon de condensa-

teur cylindrique d’ouverture angulaire 6; judicieusement
choisie. Des électrons pénetrent par la fente fine F; paral-
lelea (Oz) (avec OF| =rp) avec une vitesse initiale v sup-
posée normale a (Oz) . On applique en outre un champ magné-
tique uniforme B =B e, .

E=-

A-.
r e
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Exercices

y
\ oF
\\\ / "
F 7
2 )\/_ ; Ua
“ 1
g ﬁoT
5 -—
ez(jo a F b X

1) On suppose d’abord 7y .OF; = 0 (vitesse initiale ortho-
radiale). Déterminer la relation qui doit lier A, ry, vy et B
pour que la trajectoire des électrons soit circulaire dans le

condensateur. Montrer qu’il existe une valeur optimale de A
telle que cette relation soit approximativement satisfaite, méme
si la norme de la vitesse initiale des électrons présente une
(faible) dispersion autour de la valeur v .

2) On suppose maintenant que les vitesses initiales des élec-
trons font un petit angle ¢ avec la normale 8 OF| en F| .
Montrer que le choix 6 = (en radians) permet néan-

V2
moins de focaliser les électrons dans la fente de sortie en F5.

3) En déduire une méthode de détermination de (%) .

Pour quelle valeur de Vj,—V,, obtient-on une intensité maxi-
male dans un détecteur placé derriere la fente F; ?
a+b
2
a=300cm; b=4,00cm; B=3,00.10>T.

On prendra rp=

Données :

Corrigés

Solution du tac au tac, p. 196. 5. Faux
l. Faux 6. Vrai
2. Vrai 1. Vrai
3. Faux 8. Faux
4, Faux 9. Faux
‘/I . , PRI [2eV
- 1) La vitesse vy des €lectrons est égale & vg= \/ o= .
L'équation différentielle du mouvement des électrons est m %’t’ -cEey.
Avec T(=gy=vpcos . & +uysin . ey, X;=0)=0 et y;=)=0, nous obte-
nons les solutions suivantes :
X = 9,08 Ot
\'—ixzhrtana .
2mvocos-

y s’annule pour deux valeurs de x:
2

=0 et xg= 2 sin 0/cos o/ = 2Xsm2a
E

Pour que xp dépende peu de «, il faut que % =0 donc:
cos20=0 et a= 0= % .

11 faudra donc choisir les conditions suivantes :
p=

et o= L
AN.: E=105V.m!

2) Le développement limite de xp au voisinage de &= ¢ nous donne (en posant
/= 0y + € et en se limitant aux termes d’ordre deux) :

(d Xp

xp(e) =xg(og) + £ W

2

a=aog

Sachant que xg () = L sin 2, nous obtenons :
xp(0) - xp(ag)=-2L €.
La valeur de Aa acceptable est donc donnée par :

Aa_ [AL i Ag= ~8°
7 =\ oL , soit Aor=0,14rad~8°.

2V

0B

2

gt A partir de mvy=epB etde % mv% =eV, nous obtenons % =

On en déduit % =1.8.1011 C.kg™! (la précision sur V n’autorise pas un nombre
plus élevé de chiffres significatifs).

S

et 1) La trajectoire des électrons dans 9 est circulaire et de centre C (xp=0

mo
et ye=p= e_BU)‘

Par suite : yp=p (1 -cosa), avec L=psina

l-cosa ayec sing= L= BL
sin @

1=
etdonc: yp=L Py

_ ¢eBL
o= o

soit : sinor= et yp= ===

2eV)

AN.:v= ( m = gL

o= 8L =89 1073 rad = 5,11°;

vy

)2 =593.10m.s7;

% =0,09 et yp=0445 mm.

2) Le point d’impact [ vérifie y;=yp+ (D—%) tan(e)=Da=D % .
AN, :y=178cm. :

p=112cm;



10. La force de Lorentz

3) 00 =psin % =p % % Ladroite de PI passe par le point Q' milieude OT.
Remarque

Notons la différence essentielle entre la déflexion magnétique (y; inversement pro-
portionnelle a mvg) et la déflexion électrostatique (yy inversement proportionnelle

a % mn v% ). Ceci est mis a profit plus loin pour séparer des isotropes (exercices 6).

4‘“,_..; Nous sommes en présence, par exemple, de protons dans un liquide sursatu-

rant (protons dans une chambre a bulles). Des bulles de gaz se créent sur le parcours
du proton et matérialisent sa trajectoire. Le procédeé était utilisé pour détecter des par-
ticules.

L'équation différentielle du mouvement s’écrit m %_7; =g AB-k7, soit:

et 7= .
k

diminue (influence de la force de frottement)

47 = _peny-
dt

Au cours du mouvement la norme de 7~

qB
. aveC 0=

==

et le rayon de courbure de la trajectoire (p = % ) diminue : la particule « s’en-

roule » autour d’un point asymptotique M., ; c’est ce que nous voyons sur la simu-
lation.

1,0 12 14
0 1 1 1
X
~0.2-
- 0,4
- 0,61
_0’8A
- 1,04
vo=1; Mg[03;-09],
- 1.2 soit tan f=-
Les équations du mouvement : )
Bt by 1 dy
dt3+Tdf =0 E+fd—_ e

peuvent se regrouper en posant u =x + iy :
du (1, \du
—+in) 5 =0.
dt2 (‘E ) dt
Une premiere intégration donne :

du ( +xw)1
F=y e
d
puis, une seconde intégration :
— i, —ygr(l -iot) [ | ..
iz U (elprioh ) . TR ( . )(e’?(coswt—zsm -1 |
T i 1 +(wr)

En séparant les parties réelle et imaginaire, il vient :

P 2(1+e'r(—coswt+wrsinwt)
1 + (1)
Vof .

= 2(—wr+e r(smwt+wrcoswz)‘
1 +(o7)

La trajectoire de la particule tend vers le point asymptote M, de coordonnées :

oy _ —yor?
1+ () 1+(a)r)2 '
« Posons @, = i et a= [ L'équation différentielle du mouvement :
e = m = q o
% =ae +0OT e,
donne en projection :
o 2% 2 doh v.=at et 7= &7
dr ¢ =2t
dv, dv,
. a = @y et O == @Yy -

En posant = v, +ivy il vient du @cu=0 cequis’integreen :

dt
1= vy €% = jyy(cos @yt - i sin 1)
et par suite : ve=vosina, et vy,=Vcos o,

Yo VO
soit, enfin : x= 4 (1 cos @) et y= 7 sina.

21

Pour #,=nT=n 2% , la particule entre en contact avec I'axe des z et traverse le

diaphragme s’il est place en: g= 42 =2 mE
2" q 32

A ces dates, le vecteur vitesse est incliné d’un angle ;, sur I'axe (0z) tel que :

Yo _ Vo _ B

tan @, = V. Jnan  2mEn
B E .
et Posons @= qﬁ et a= qﬁ (a homogene a une accélération).
L’équation vectorielle du mouvement est m %Z; =q E +q7 n B etles équations
scalaires dans le repere considéré (valable pour x< L) :
(3?)2( = w% (ce qui donne % =07),
d_ ' 1,2
W @ (dont la solution est y= 3 ar”)
d_ & , dz
L3 = ox+ ).
et dt2 -0 (ce qui donne i OX + 1))

Les déviations dues aux champs £ ou B sont indépendantes.

2
L'équation % =— %z apour solution z= (—) sinot,
2

dou x= (%) (1-cost).

Sachant que wr<<1 (avec 7= VLO ordre de grandeur du temps 7 mis par la par-

ticule pour franchir la distance L ), nous pouvons écrire :

5
vpi=
z=vgt et x= OT , (ot << 1) al’ordre deux.
La particule franchit donc le plan z=L a 7= vLO et les coordonnées du point P

aL

2
o la particule sort des champs sont xp = % et yp=
0

Le mouvement ultérieur est rectiligne ; la droite passe par le point Q de coordonnées
00 L)
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Corriges

Les coordonnées du point d’impact / sont :

X1=%XP et YI=2TD)’P

résultat qui peut encore §'écrire :

eLBD
)

«ye

X =

L’élimination de la vitesse v fournit y;= (ﬂ le.Le point d’impact est donc

qB*LD

situé sur une parabole déterminée par le rapport % . La dispersion sur les valeurs
de v permet de décrire cette parabole.

Si lamasse varie, le point figuratif se déplace sur un autre morceau de parabole. I1 est
possible ainsi de mettre en évidence la présence d’isotropes. Il s’agit d’un spectro-
graphe de masse particulier utilisé la premiere fois par J.-J. Thomson.

z,. Comme les particules traversent la zone sans déviation, cela signifie que :
.. E+7rB=0,
¢ »_—_ EANB_E >~ _ -1
soit 7= vp= 2 "B ey (v=5.100m.s7").

Chaque proton possede une quantité de mouvement p =mve, . Le nombre dn de

protons qui arrivent sur la cible pendant un intervalle de temps dt (donné par
dn= %dl) subissent une variation de quantité de mouvement égalea Ap =-p'.

La force exercée par la cible sur ces protons est donc égale a :

dn.Ap =F.dt=- %m vey dt, soit F.Ciwe_)pmmns =- % moey .
D’apres le principe des actions réciproques, la force subie par la cible est directement
L= L=
apposée, Soit Fprotons—cible =+ ¢ MV €y -

AN.:F=13mN.

§,,,/ 1) Silavitesse 7~ du proton est dans le plan (xOy), elle y restera indéfini-

ment, car la force €lectrique et la force magnétique restent dans ce plan. Comme il
1’y a aucune composante de force suivant e;, la vitesse v; est constante. Or a
t=0,7=0, donc v,=0.
Les équations différentielles d’évolution dans ce plan s’écrivent :
¥ =0y
y =acos(wyt) - ox

—_
D =
= =

2) En reportant la soution de (1) (X = wy) dans Iéquation (2) nous obtenons :
y +a)2y=acoswlt,

. @ COS
i ¥ =Acos (014 9) + !

0 -
Avec les conditions initiales y(0)=0 et y(0)=0, nous obtenons (0= @) :

a
t)= COS 1 — cos Wt
0= syt -cosor]

et x(t)=

U) . .
O Gin ot - sin o] .
-} 1 I

Posons @ =n @ et étudions les simulations suivantes solutions des équations :
¥ =0y
y =acos(not)- ox,
avec ®=2m et a=1 pour diverses valeurs de 7.
+S.1. n=0: nous obtenons la trajectoire cycloidale classique du mouvement d’une
charge (¢, m) dans E et B croisés, indépendants du temps.

202

To

=Y

+8.2.n=0,1 et 8.3.n=0,2 : la trajectoire reste a distance finie.

Pour n<<1:

x()= -4 sinnot et y(f)=- % [cos (nwt) - cos 1] .
)

nw-

La courbe est inscrite dans le rectangle

27117 ; 4%‘ allongé suivant I'axe (Ox) .
0 0

y

oSd.n=1:
(= 4 tq
y(t) = %0 tsin@t et x(

la trajectoire diverge.

1)= iz [sin ot - (wt) cos ] ,
20

NIZAYRYE

+8.5.n=5 et 8.6.n=10: la trajectoire reste a distance finie.

Pour n>> 1,

x(t) = % sinor et y(r)=- q‘—’2 [cos(n wt) - cos wt] .
ntw? ntm

La courbe est inscrite dans le rectangle

2a . 4a |
no?  nlo?




10. La force de Lorentz

y
: {% )
Remarque :

En excluant la valeur n =0, la trajectoire diverge pour n=1. Ce comportement
a recu une application, 'omégatron : il est possible de « mesurer » précisément %
en recherchant la valeur @) = @ pour laquelle les particules divergent, E et B

étant connus.
A
z |

g_ﬂy 1) La force magnétique ne travaille pas. La force de frottement a pour effet

de diminuer la vitesse de la particule.
L'équation différentielle du mouvement s’écrit :

7_ 9B o
dd—?=—qﬁezl\1/—%1)1/,
En multipliant scalairement par 7" :
dd _ dv_ k3 < do k o
St=pst=— ) soit Sl =—T-p2
dr T m? dt m”
et en intégrant, nous obtenons lv‘vi():;&n’v soit v= % e
]+7/0m[

Le mouvement s’effectue dans le plan (xOy) et la vitesse v s’annule au bout d’un
temps infini.

2) La vitesse diminue au cours du temps. Le rayon de courbure de la trajectoire dimi-
nue. Nous obtenons une « spirale » s’enroulant autour d’un point asymptotique limite
M,, comme I'indique la simulation.

¥ =+oy-foietj=-0i-foy,
avec

v= ity o=2n; f=1; §=05; jo=1; x=0 et yp=0.

0,9
0,647,
0,3

0 0,4
-0,34

~0,6-
~0,9-
— 1,2

- 1,54

1Q, La vitesse reste en permanence égale 2 v en norme. Considérons une

. . - . _omy
charge ¢>0. Si y>0, la particule décrit un demi-cercle de rayon p; = 7B+ 4B
pendant une durée 7; = WT‘(;‘
Si y<0, la particule

23 q y
décrit un demi-cercle de -

_my By+AB
rayon py = B, pen- ®
dant une durée : v,

P, ] p/
0= (>p). : <
Il existe donc une vitesse 0> ®B *
de dérive Vp, dans le s
sens des x décroissants,
définie par :
7 PPl % ABe;,
=275, &% 25,48
La vitesse de dérive est opposée si ¢ <0.
yx 0,14 B+AB
1,6+ ©
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Corriges

-7/1 Le mouvement s’effectue dans un plan méridien 6= cte.
ol P

Eneffet Ly, est constant car :

dLy, . — =
T& =& .[OM A (q7 A B)]=0 (g=~¢).
L’équation différentielle du mouvement devient 7 = % zet7=- % i

En remplacant B par son expression nous obtenons :

. € ol 4 _ ol
F=- gt dob i=- 55oin(g).
Sachant que 2+ 7%= 1/0 (la force magnétique ne travaille pas), la cote ry,y sera

atteinte lorsque Z =-wvg, soit:

Fmax = @ €Xp

2 14
epgl |
La simulation montre I"allure de la trajectoire.

ZA
- 1,2 1 a 17(]
% )
-0,6
T T T T T T T T -
-1,6 208 O 08 1,6 24 32 40 48 T
- 0,6
- 1,2
-1,84
fil
- 244 arrét du mouvement
304 de la particule : elle
— =8 est revenue au contact
~364 du fil

Mouvement d’un électron émis par un fil cylindrique parcouru par un courant I .

=

coordonnées polaires donne :

1) La relation fondamentale de la dynamique appliquée a un €lectron, en

P b= %(f—Bre) @
L 02)=B i ®

g 2 Yy
Si r=ry=cte, alors f=cte= TO
0

e m g
Nous déduisons que A=Broyp— —5—

Cette expression doit peu dépendre de v, soit éﬂ =0=Bry-2 % v .
%

Ce qui nous donne :
E e Brywy _m v}
T ) T e
et en éliminant la vitesse A = In E B2, | soit A;A, ,?, .
B g

2) Les simulations jointes montrent qu’il existe bien une focalisation (o= 5° et
o=-5°)125°< 6, < 128°.

Retrouvons ce résultat par le calcul : posons r=ry+ p et cherchons linéariser I'équa-
tionen p.
L’équation (2) nous donne :

) SeB (2 soit 0= B ar = B
20— ry vy cos ot m (2-1%), soit 8 m (car o o0 et o<<1).
L’équation (1) nous donne :

5 (B g 8
p_(Zm) (ro+p)= Iil{(0+p)_B(0 p)Zm
soit en linéarisant j)'+2(%)2p=0,
. _ Ny a J—ﬁ
dont la solution est p= T (~2 m t),
rx0,1
- 10,61
- 10,4
(1_5"
- 10,21
-10,0
-9,84 o= _ 5
- 9,6
_9’4A 6=1250 0:1280 9 102(1)
00 02 04 06 08 10 1,2 14 1,6 1,8

Mise en évidence de la focalisation pour 0=+ 5°.

Pour #; = 0=0; acette date 0= 6, = soit encore 127°, ce qui

J_ B

correspond bien au résultat attendu.

ﬁ ;

3) 0, étant ﬁxe on fait varier A de fagon a collecter le maximum d’électrons et on

en déduit = B‘;Ar ce qui correspond & une mesure trés précise de < Za
AN Vg=Vo= L&) B riin b 139 vols.

Z

point de focalisation 1,2

1 0()

03 O
~0,2-

-0,6

-09

Mise en évidence du point de focalisation avec = 5°.



Annexe

Annexe

L’opérateur gradient

|. Définition

Soit une fonction scalaire f dont les valeurs f(M) dépen-
dent des coordonnées d’espace : cette fonction définit un
champ scalaire dont les surfaces de niveau (S) ont pour
équation f(M) = cte.

Considérons deux b4

points arbitraires ~ W
infiniment voisins
Met M’ (doc. 1) et
notons :

dM = MM’ et 0
df = M) - fiM). J
L’opérateur grad,
appliqué au x
champ scalaire Doc. 1.
f(M), définit un
champ vectoriel grad (f(M)) tel que, par définition :

df = grad (f(M)).dM .

2. Propriétés

* Si M et M’ sont deux
points de la méme sur-
face de niveau (), alors,
d’une part, dM = MM’
est un vecteur du plan
tangenten M ala surface
(S) et d’autre part :
df=fiM") - (M) =0
(doc. 2). De larelation de
définition du gradient, nous concluons que :

Le vecteur grad (f(M)) est orthogonal en M  la sur-
face de niveau passant par ce point.

grad f (M)

oc. 2.

* Nous appellerons lignes orthogonales aux surfaces de
niveau (S), les courbes tangentes en chacun de leur point
M au vecteur grad (f(M)). Les lignes orthogonales sont
aussi, par définition, des courbes orientées dans le sens du
vecteur M (f(iM)) : ces courbes sont donc les lignes de
champ de grad f.

Ainsi, pour un champ scalaire fiM) donné, il est possible
de définir une infinité de surfaces de niveau (S) et une infi-
nité de lignes orthogonales (C) associées (doc. 3).

* Considérons une ligne orthogonale (C) et un déplace-
ment élémentaire dM = MM, le long de la ligne et dans
le sens de la ligne (doc. 4).

cy & * gradf ()

(€

Doc. 3.

Doc. 4.

Les vecteurs dM et grad (f(M)) étant alors colinéaires et
de méme sens, nous pouvons écrire :

df = grad (fM)). dM >0
et conclure :

Le vecteur grad (f(M)) est orienté dans le sens crois-
sant de la fonction f.

3. Ou rencontre-t-on I'opérateur gradient
en physique ?

M Gradient de pression

Considérons un fluide en équilibre dans le champ de pesan-
teur terrestre. Les pressions les plus importantes sont obte-
nues pour les altitudes faibles. Le gradient de pression est
dirigé vers le bas (doc. 5).

y

o X

Doc. 5. Dans un fluide, il existe un gradient de pression.

H Gradient de température

Considérons un milieu homogene situé entre deux ther-
mostats aux températures T et T, telles que 7 > T. Les
températures, en régime permanent, seront d’autant plus
élevées que I’on sera au voisinage du thermostat a la
température 7». Le gradient de température est dirigé de

T, vers T;. Le flux thermique est dirigé en sens inverse
(doc. 6).
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Annexe

thermostat T

!

températures
élevées

T

températures
faibles

Doc. 6. T, > T : dans un solide il existe un flux thermique
orienté en sens inverse du gradient de température.

M Gradient d’indice

Considérons une fibre optique, cylindrique, dont I’indice
optique est fonction de r, distance du point considéré a
I’axe de la fibre. Pour qu’un rayon optique soit stable dans
cette configuration, il faut que les indices les plus élevés
soient situés proches de 1’axe de la fibre. Le gradient d’in-
dice est donc dirigé vers 1’axe (doc. 7).

Doc. 7. Dans une fibre optique, ces gradients d’indice per-
mettent de guider un rayon optique.

H Gradient de potentiel

Soit un champ électrique E dérivant d’un potentiel V, ¢’est-
a-dire un champ de nature électrostatique. La relation liant
le champ E et le potentiel V est de la forme E =— grad V.

Le vecteur grad (V) étant orienté vers les potientiels
croissants, le champ E est dirigé vers les potentiels décrois-
sants.

y %

V=+V,

V=1V,
Doc. 8. Exemple de gradient de potentiel (Vy>0).

4. Expressions du gradient
Pour trouver ses composantes, il suffit d’écrire :
df=dr’. grad f,

en précisant I’expression du déplacement élémentaire dr”
dans le systéme de coordonnées utilisé.
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B Coordonnées cartésiennes (doc. 9)

Nous écrivons :
(o CARTaLA
df(x, y,2) = (ax)y, dx + (dy)x)z b+ 15 vy &

dF =dx.g, + dy. 2y +dz.2;
df =dr. grad f=dx. (grad f), + dy. (grad f),
+dz. (grad /),

donc par identification des
expressions de df :

af af
grad f= exa +e, - 3y

. af

+€Zaiz.

Doc. 9. > X

H Coordonnées cylindriques (doc.
Nous écrivons :

10)

df (r, 6, z) = (3—{) 0. dr+ (%) . do+ (%)r’e dz

dr =dr.e, + rdf.ep+dz.e,

df =di". grad f=dr. (grad f), + rd@. (grad f)g
+dz. (grad f),
Soit :
grad f= er(;{ +eg}, Z{;
+E’Zg—§-
Doc. 10. »

B Coordonnées sphériques (doc. 11)

Nous écrivons :
_ af af af
df(r, 6, ) = (y) o0 dr+ (ae)w a6+ (@)r,e ie

dr" =dr.e, +rd6.eg+rsin 6dg.e,
df = dr . grad f=dr. (grad f), + rd6. (grad f)g
+rsin 6dg. (grad f),

Soit :
of . 10f
grad f= e,a +e €07 30
1 9f

+e¢ rsin @ 0@ -




A-C
Approximation des régimes lentement
variables 117

Champ
de gradient 40
de Hall 191
électrostatique créé par
un dipole 84-85
un fil infini chargé A 70
un cylindre chargé en surface 70
surfacique uniforme heére chargée
en surface 72
une distribution quelconque 19
gravitationnel 31
magnétostatique créé par
un courant filiforme 163
un dipdle 165-167
un élément de courant 119
un fil rectiligne infini 142
un solénoide (sur son axe) 132
un solénoide infini 148-149
une nappe plane infinie 145
magnétostatique uniforme 144
Changement de référentiel
pour E et B 176
Circulation du champ
électrostatique 40
magnétostatique d’un fil 142
Condensateur 51
plan 52
Capacité 53
Déflexion électrostatique 179
Conducteurs en équilibre électrosta-
tique 51
Conduction d’un métal 186
Conductivité électrique 189
Conservation de la charge électrique
102
Constante
d’interaction électrostatique 18
de Hall 191
Courant
de conduction 103
de convection 104
électrique 102
particulaire 104

]:ndex

Cyclotron 185

D
Dipble
Approximation dipolaire 165
électrostatique
Actions d’un champ 88
champ créé 84-85
dipdle non rigide 93
Modele du dipole 82-83
Moment en O des forces 90
Objets polaires 82
Potentiel créé 83-84
Dip6le magnétique
Analogie avec le dipdle électrosta-
tique 165
Champ créé 165-167
moment dipolaire 82, 163
Discontinuité
du champ électrostatique 29
du champ magnétostatique 150
Distribution de charge
Antisymétrie plane 25
Invariance par translation 27
rotation 27
linéique 20
surfacique 20
Symétries 11, 24
cylindrique 69
élémentaire 24
multiple 29
plane 27, 67
sphérique 71
volumique 20
Distribution de courant
Antisymétrie plane 108, 124
filiforme 105
Invariance
par rotation 110, 125
par translation 109, 125
surfacique 107
Symétries 108, 122
multiples 110
plane 108, 123
volumique 106

Divers courants électriques 102

E-F-G
Echelle
continu (milieu) 8
macroscopique 8
mésoscopique 8
microscopique 7
Electrons de conduction 186
Energie potentielle 49
d’interaction 93
d’interaction
de deux charges ponctuelles 50
électrostatique 49
Equation de transport 191
Flux
canalisation du flux magnétique 129
du champ de gravitation 63
du champ électrostatique 62, 65
d’une charge 62
du champ magnétique 127
Force
de Laplace 193
de Lorentz 117, 176
Gradient
Expression 205
Opérateur 205

I[-L-M
Intensité électrique 102
Invariance de jauge 42
Lignes de champ 22,121
Loi
d’Ohm locale 188
de Biot et Savart 118, 120
de Coulomb 18
Milieu continu 8
Mobilité 189
Moment magnétique
atomique 164

O-P-R

Objets polaires 82

Oscilloscope analogique
Principe 178

Particule chargée dans les champs E
et/ou B 177

Permittivité électrique
du vide 18
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Potentiel
d’une distribution 44
électrostatique 41
Principe
de superposition 19, 120
Répartition de charges 7
Résistance d’un conducteur filiforme
cylindrique 189
Résistivité 189

S-T-V
Solénoide infini
Limite 132, 148-149

Spectrographe
de Bainbridge 185
de masse 184

Temps
de conduction 187
de relaxation 187

Théoreme
d’Ampere 143, 145-149
Choix du « contour d’Ampere »
145-148
de Gauss 64
Topographie
du champ électrostatique 22

du potentiel électrostatique 46
Travail de la force électrostatique 49
Tube de champ 23
Vecteur

axial 126

Elément de courant 118
Vitesse de dérive 18
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