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Cette collection concerne les nouveaux programmes des classes préparatoires aux Grandes Écoles, mis en appli-
cation à la rentrée de septembre 2003 pour les classes de première année MPSI, PCSI et PTSI.

• Les auteurs ont fait en sorte de placer les mathématiques à leur juste place, en privilégiant la réflexion et le
raisonnement physique et en mettant l’accent sur les paramètres significatifs et les relations qui les unissent.

• La physique est une science expérimentale et doit être enseignée en tant que telle. Les auteurs ont particuliè-
rement soigné la description des dispositifs expérimentaux sans négliger la dimension pratique. Souhaitons que
leurs efforts incitent professeurs et élèves à améliorer ou à susciter les activités expérimentales toujours très for-
matrices.

• La physique n’est pas une science désincarnée, uniquement préoccupée de spéculations fermées aux réalités tech-
nologiques. Chaque fois que le sujet s’y prête, les auteurs ont donné une large place aux applications scienti-
fiques ou industrielles, propres à motiver nos futurs chercheurs et ingénieurs.

• La physique n’est pas une science aseptisée et intemporelle, elle est le produit d’une époque et ne s’exclut pas
du champ des activités humaines. Les auteurs n’ont pas dédaigné les références à l’histoire des sciences, aussi
bien pour décrire l’évolution des modèles théoriques que pour replacer les expériences dans leur contexte.

L’équipe d’auteurs, coordonnée par Jean-Marie BRÉBEC, est composée de professeurs de classes préparatoires
très expérimentés, qui possèdent une longue pratique des concours des Grandes Écoles et dont la compétence
scientifique est unanimement reconnue. Cette équipe a travaillé en relation étroite avec les auteurs des collec-
tions DURANDEAU et DURUPTHY du second cycle des classes de lycée ; les ouvrages de classes préparatoires s’ins-
crivent donc dans une parfaite continuité avec ceux du secondaire, tant dans la forme que dans l’esprit.

Gageons que ces ouvrages constitueront de précieux outils pour les étudiants, tant pour une préparation efficace
des concours que pour l’acquisition d’une solide culture scientifique.

J.-P. DURANDEAU
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Distributions
de charges 1

La matière est constituée d’électrons, de protons
et de neutrons. Pour décrire les propriétés

de ces particules, il est nécessaire de leur associer
une grandeur physique appelée charge électrique.

En étudiant les propriétés et les interactions
des ensembles (ou distributions)

de charges électriques, nous définirons le cadre
de l’électromagnétisme adopté dans cet ouvrage.

O B J E C T I F S

■ Choisir un modèle de description des dis-
tributions de charges.

■ Reconnaître leurs symétries.

P R É R E Q U I S

■ Expériences élémentaires d’électrisation vues
dans le cycle secondaire.



6

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI

-P
CS

I-
PT

SI
–L

ap
ho

to
co

pie
no

na
ut

or
isé

ee
st

un
dé

lit

1. Distributions de charges

La charge électr ique1
1.1. Électrisation – Charge élémentaire

1.1.1. Expériences qualitatives

Les expériences d’électrisation sont connues depuis l’Antiquité ; celles-ci (vues
dans les classes antérieures) mettent en évidence quelques propriétés électriques
de la matière :

• certains matériaux (verre, plexiglas…) possèdent, lorsqu’ils ont été frottés avec
d’autres matériaux, la propriété d’attirer des corps légers. Nous disons qu’ils ont été
électrisés ;

• les interactions observables entre corps électrisés conduisent à distinguer deux
types d’électrisation. Deux objets semblablement électrisés se repoussent et, dans
le cas contraire, ils s’attirent.

L’étude quantitative des lois d’attraction et de répulsion fut réalisée par A. de
Coulomb (1736-1806), qui proposa sa loi d’interaction en 1785.

1.1.2. Particules et charges élémentaires

Des expériences datant de la fin du XIXe siècle (J.-J. Thomson, 1856-1940 et
J. Perrin, 1870-1942) conduisent à une interprétation de la matière en termes de
corpuscules élémentaires pouvant porter des charges électriques positives ou néga-
tives.

• Les protons, chargés positivement, constituent avec les neutrons, de charge nulle,
les noyaux des atomes.

• Les électrons, chargés négativement, constituent l’enveloppe (nuage électro-
nique) de ces mêmes atomes.

• La charge de l’électron vaut – e � – 1,602 . 10– 19 C . Fait remarquable, celle
du proton lui est exactement opposée ; elle est égale à � e .

Lors des expériences classiques d’électrisation, les charges positives, liées aux
noyaux, restent au sein des supports matériels. On obtient une électrisation posi-
tive ou négative des objets utilisés lorsque des électrons sont respectivement arra-
chés ou apportés.

Remarque

Les quarks, constituants ultimes de la matière nucléaire connus à ce jour, portent

des charges multiples entiers de . Ils ne sont pas observés isolément, mais à

l’intérieur de structures dont la charge est un multiple entier de e .

Les charges observées sont toujours des multiples entiers de la charge
élémentaire e : la charge électrique est quantifiée.

L’unité de charge est le coulomb, noté C.



1.2. Conservation de la charge
La charge électrique est une grandeur fondamentale qui intervient dans les expressions
des champs électromagnétiques créés par des distributions de charges statiques ou
mobiles (courants).

Toutes les interactions connues à ce jour (collisions de particules dans les accéléra-
teurs, réactions chimiques, etc.) ont la propriété de conserver la charge électrique.
En outre, cette grandeur est indépendante du référentiel d’observation.

La charge électrique est une grandeur indépendante du référentiel d’observation.

Distr ibutions de charges2
2.1. Charges ponctuelles
Une particule est en général un objet d’extension spatiale très limitée. L’extension
d’un nucléon (composant du noyau d’un atome : proton ou neutron), par exemple,
est de l’ordre du fermi ou femtomètre (10– 15 m).

Les lois de l’électromagnétisme donnent une description satisfaisante du compor-
tement des particules chargées tant que les distances mises en jeu restent grandes
devant cette distance élémentaire.

Assimiler les particules élémentaires chargées à des points matériels portant une
charge constitue ainsi une approximation convenable.

Nous définirons une distribution de N charges ponctuelles par l’ensemble des posi-
tions rin = OMiO des charges q i , i variant de 1 à N (doc. 1).

2.2. Modélisation d’une répartition de charges

2.2.1. Échelle microscopique

À l’échelle microscopique, caractérisée par une longueur notée d, la structure de
la matière apparaît discontinue.

Dans un milieu condensé (solide, liquide), cette distance d sera de l’ordre de
quelques dizaines de nanomètres, car la taille d’un atome est de l’ordre de
0,1 nm.

Ainsi, dans un cristal, les distances séparant les atomes ou les ions varient environ de
0,2 nm à 1 nm .

Pour un observateur capable d’une observation microscopique du milieu, celui-ci
pourrait avoir un aspect semblable à celui représenté par le document 2.

Remarque

L’utilisation d’un microscope à effet tunnel permet ce genre d’observation. Grâce à cet
appareil, il est par exemple possible d’observer la surface d’un solide en distinguant les
couches d’empilement des atomes le composant.

Pour un système fermé, c’est-à-dire n’échangeant pas de matière avec l’ex-
térieur, la charge électrique est constante et elle est la même pour tous les
observateurs.
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1. Distributions de charges

Doc. 1. Distribution de N charges ponc-
tuelles.

MN(qN)

Mi(qi)

M1(q1)

M2(q2)
O

Doc. 2. Répartition de charges à l’échelle
microscopique.

d



2.2.2. Échelle macroscopique

L’échelle macroscopique est fixée par une longueur caractéristique D définie à par-
tir des caractéristiques significatives directement perceptibles à l’examen de l’objet
étudié : dimensions latérales, périodes spatiales pour les objets de très grandes dimen-
sions à structure périodique, etc.

Dans la plupart des cas, cette longueur D est très largement supérieure à la longueur
microscopique d .

Une représentation macroscopique d’un objet est donnée document 3, où les zones
plus (ou moins) sombres symbolisent une concentration plus (ou moins) forte de
charges électriques.

2.2.3. Échelle mésoscopique

À l’échelle microscopique, la structure de la matière est discontinue. Les entités
microscopiques sont considérées explicitement et cette particularité se prête mal à
l’étude de leurs comportements d’ensemble.

À l’échelle macroscopique, la description des objets est imprécise et elle ne permet
pas de prévoir leurs comportements.

Pour lever ce dilemme il est nécessaire d’introduire une troisième échelle, dite méso-
scopique. Cette échelle, intermédiaire entre l’échelle microscopique de longueur
caractéristique d et l’échelle macroscopique de longueur caractéristique D,
est définie par une longueur caractéristique 	 satisfaisant à la double inégalité
d << 	 << D.

Sous réserve de l’existence d’une telle échelle, il sera possible de donner une des-
cription locale des objets étudiés avec les deux avantages suivants :

• comme 	 >> d , il est possible de définir convenablement la grandeur locale
moyenne des grandeurs attachées aux entités microscopique, puisqu’un volume 	3

contient un très grand nombre de ces entités. Cette opération de lissage ou de nivel-
lement fait de la valeur locale une grandeur variant continûment. Il est dès lors pos-
sible d’adopter une description des objets en termes de milieux continus ;

• comme 	 << D, le volume 	3 reste très petit à l’échelle macroscopique, et, de ce
fait, la description locale est une description précise de l’objet étudié.

Le document 4 résume les propriétés des trois échelles examinées.

À une échelle macroscopique, les distributions de charges (entités micros-
copiques) seront représentées à l’aide d’une grandeur nivelée à une échelle
mésoscopique : la densité de charges.
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1. Distributions de charges

Ordre de grandeur de d dans un plasma

Évaluer l’ordre de grandeur de la longueur
caractéristique d pour un plasma, milieu ionisé
constitué d’électrons et d’ions de densités identiques
n � 1021 m–3 .

Si nous associons à chaque particule un volume égal
à d3, un ordre de grandeur de d s’établit à :

d � � 10– 7 m � 102 nm .

Application 1

Doc. 4. Échelles microscopique d,
mésoscopique 	 et macroscopique D.

D

d

	

d

�

Doc. 3. Observation à l’échelle macros-
copique.

D



Remarque
La description des distributions de charges en termes mésoscopiques est la seule
qui soit opératoire quand le nombre de charges est élevé. Mais nous perdons toute
information sur le comportement individuel des entités microscopiques et nous devons
nous contenter dès lors de leur comportement local d’ensemble.

2.3. Charges volumiques

La présence de charges dans un milieu est en général modélisée par une charge
délocalisée, nivelée, décrite par la charge volumique � .

Pour un milieu chargé de volume V, la distribution de charges � est définie par la
donnée de � à l’intérieur de la surface S contenant V (doc. 5).

La charge contenue dans un volume élémentaire d� (petit à l’échelle
macroscopique et de l’ordre de �3) est :

dq � �d� .

La densité volumique � est mesurée en C . m� 3 .

9

1. Distributions de charges

Répartition des charges sur une sphère
conductrice portée à un potentiel donné

Le cuivre, de numéro atomique Z � 29 , de masse
molaire M � 64 g . mol– 1 , a pour masse volumique
� � 8,9 . 103 kg . m– 3 .

Une petite sphère de cuivre de rayon a � 1 mm est
chargée en la portant au potentiel V � 3 000 V (au-
delà, le champ électrique de la sphère peut provoquer
l’ionisation de l’air environnant). La charge apportée est
alors :

Q � 4πe0aV , où � 9 . 109 SI .

L’apport d’une charge Q entraîne une déformation des
nuages électroniques au voisinage de la surface de la
sphère. La charge excédentaire apparaît ainsi déloca-
lisée, nivelée localement sur une épaisseur d’exten-
sion caractéristique de l’ordre de 30 nm .

Les valeurs numériques proposées dans cet énoncé sont-
elles en accord avec les inégalités liant d , � et D ?

La sphère contient :

N � NA atomes de cuivre,

où NA � 6,02 . 1023 mol� 1 est le nombre d’Avogadro.
Le nombre de protons contenus dans la sphère est donc
Np � Z N � 1022 .

Le nombre d’électrons est identique si la sphère est
neutre. La charge Q positive portée par la sphère cor-
respond à une diminution de son nombre d’électrons
(charges libres), soit :

Ne � Np – � 1022 – 2 . 109 .

Constatons que la différence relative de Np et Ne est très
faible : le milieu est peu perturbé par la charge.

Nous pouvons définir une longueur microscopique d en
attribuant à chaque atome de cuivre un volume de l’ordre

de d3 , soit :

Nd3 � πa3 ,

d’où d � � 0,23 . 10– 9 m � 0,23 nm .

La distance caractérisant l’étalement de l’excès de charge
nous permet de définir une échelle mésoscopique
	 = 30 nm grande devant d et encore très faible à
l’échelle macroscopique définie, par exemple, par le
rayon de la sphère de cuivre : D = a = 1 mm.

Application 2

Doc. 5. Distribution volumique de char-
ges.

O

dq

d�

r
(S)

(V)

�
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2.4. Charges surfaciques
Supposons que la distribution � présente l’aspect d’une nappe chargée : la densité
volumique de charges est non nulle à l’intérieur d’une écorce d’épaisseur h très
faible à l’échelle macroscopique d’étude (doc. 6a).

Pour une surface élémentaire dS de cette nappe, la charge portée par le volume
d� � h dS est dq � �d� � �h d S .

L’épaisseur h étant très petite, considérons la représentation limite « h tend vers
zéro à charge dq constante » pour un élément de surface dS donné. Le produit �h ,
que nous noterons � , doit être maintenu constant en considérant cette description
limite de la distribution � (doc. 6b).

Nous définissons ainsi une distribution surfacique de charges, de densité � .

� Pour s’entraîner : ex. 6 et 8.

2.5. Charges linéiques
Lorsque la distribution de charges � est filiforme, nous définirons de façon ana-
logue une distribution linéique de charges le long de la courbe (C) en introduisant
une densité linéique � (doc. 7) .

� Pour s’entraîner : ex. 8.

La charge portée par une longueur élémentaire d� est dq � 
 d� .

La densité linéique 
 est mesurée en C . m� 1 .

La charge portée par une surface élémentaire dS (petite à l’échelle
macroscopique et de l’ordre de �2) s’écrit alors dq � 
 dS .

La densité surfacique de charges 
 est mesurée en C . m� 2.
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1. Distributions de charges

Doc. 6. Écorce chargée (a) et modélisa-
tion surfacique (b).

O

dq
dS

r M

d = h dS�

h

(S)

(S)

a

b

�

�

Épaisseur de l’écorce chargée

Lorsque la bille de cuivre de l’Application 2 est chargée,
les charges excédentaires ont tendance à se répartir au
voisinage de la surface de celle-ci. En considérant les
valeurs numériques précédentes et en attribuant une
charge élémentaire excédentaire à chaque atome de
cuivre de cette couche, obtenir une évaluation de l’épais-
seur h . Commenter.

La perturbation du milieu due à l’excès de charges
est très faible. L’épaisseur h doit donc être faible
devant le rayon de la bille, de sorte que le volume de
l’écorce chargée est proche de 4πa2h .

Cette écorce contient alors atomes de
cuivre.

Chaque électron excédentaire étant supposé associé à
chacun de ces atomes, l’épaisseur h est donnée par :

Q � , soit h � .

Numériquement, nous obtenons h � 3 . 10– 14 m .

Cette valeur numérique est clairement absurde : elle est
largement inférieure à la taille d’un atome de cuivre !

Attribuer une charge excédentaire e à chaque atome de
cuivre de la couche chargée est bien entendu très exces-
sif, mais il est clair que même en répartissant cet excès
sur quelques milliers d’atomes, nous obtiendrons une
épaisseur h extraordinairement faible. La charge surfa-
cique semble alors un modèle convenable pour décrire
la distribution de charges portées par le conducteur.

Application 3

Doc. 7. Charge dq � �d	 en M .

O

dq

(C)

d	

r

�

M



2.6. Distributions de matière
La matière, elle aussi, possède une structure discontinue à l’échelle microscopique
avec les mêmes entités microscopiques à savoir les atomes, les ions et les molé-
cules. Nous sommes donc fondés à reprendre (par analogie) les échelles et les modé-
lisations qui ont été introduites lors de l’étude des distributions de charges. Pour
nos besoins ultérieurs, nous n’expliciterons que la définition de la masse volumique.

La distribution de masses dans un volume V est définie par la donnée de la masse
volumique m à l’intérieur de la surface S délimitant V.

Symétries des distr ibutions de charges3
3.1. Symétries usuelles
Les distributions de charges peuvent posséder des symétries. Nous allons exa-
miner quelques propriétés des densités de charges r (M ) liées aux symétries élé-
mentaires usuelles.

3.1.1. Symétrie plane

Le plan P de symétrie est aussi appelé plan-miroir (doc. 8).
En coordonnées cartésiennes, une distribution de charges est symétrique par rapport
au plan P = (xOy), lorsque : r(x, y, z) = r(x, y, – z) .

3.1.2. Antisymétrie plane

Le plan P* est appelé plan d’antisymétrie ou plan-antimiroir.
En coordonnées cartésiennes, une distribution de charges admet le plan P* = (xOy)
comme plan de symétrie, lorsque : r(x, y, z) = – r(x, y, – z) .

3.1.3. Invariance par translation

En coordonnées cartésiennes, si l’axe (Oz) est pris comme axe ∆, une telle dis-
tribution satisfait à l’égalité r (x, y, z) = r (x, y, z’) quel que soit z et z’, donc
la densité de charge est indépendante de la coordonnée z : r (x, y) .

Le document 9 illustre ce cas : distribution de charges contenue dans un cylindre
de génératrices parallèles à l’axe (Oz) , invariante par translation parallèlement à
l’axe (Oz) . Notons que tout plan perpendiculaire à cet axe constitue un plan de
symétrie de la distribution.

Une distribution, illimitée dans la direction de l’axe D, est invariante par
translation suivant D si, pour tout point M et son translaté M’, sa densité de
charge vérifie : r (M) = r (M’).

Une distribution est antisymétrique par rapport à un plan P * si, M et M’
étant deux points symétriques par rapport à P*, sa densité de charge vérifie :

r (M) = – r (M’).

Une distribution est symétrique par rapport à un plan P si, M et M’ étant
deux points symétriques par rapport à P , sa densité de charge vérifie :

r (M) = r (M’).

La masse contenue dans un volume élémentaire dt est : dm = m dt , la
masse volumique m est mesurée en kg.m–3.
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1. Distributions de charges

Doc. 8. Distribution invariante par symé-
trie plane.

x

z

y�

�

Doc. 9. Distribution invariante par

� �

z



Remarque

Nous pourrons aussi rencontrer des cas de distributions invariantes par des translations
discrètes le long d’un axe. Ces distributions présenteront un caractère périodique
le long de l’axe, comme l’illustre le document 10.

3.1.4. Invariance par rotation

Une distribution � est invariante par rotation autour d’un axe (Oz) si la densité de
charges est la même en un point M de la distribution et en tout point M’ obtenu par
rotation d’un angle quelconque de M autour de l’axe. Notons (r , � , z)
les coordonnées cylindriques d’axe (Oz) du point M. Pour une telle distribution,
la répartition de charges ne doit pas dépendre de l’angle � .

Remarquons que tout plan contenant l’axe de révolution (Oz) est un plan de symétrie
de la distribution de charges (doc. 11).

Remarque

Nous pourrons aussi rencontrer des cas de distributions invariantes par des rotations
discrètes autour d’un axe. Un ensemble de trois charges identiques occupant les
trois sommets d’un triangle équilatéral est invariant par rotation d’angle a multiple

entier de autour de l’axe perpendiculaire au plan du triangle et passant par

son centre.

3.2. Distributions à symétries multiples

Nous rencontrerons fréquemment des distributions invariantes vis-à-vis de plu-
sieurs symétries élémentaires. Nous avons déjà remarqué que les distributions
invariantes par translation, ou par rotation, possèdent une infinité de plans-miroirs.

Nous citerons encore deux types de distributions de charges remarquables par
leur degré de symétrie élevé. L’utilisation des propriétés précédentes permet de
démontrer les propositions suivantes.

3.2.1. Distribution à symétrie cylindrique

La distribution à symétrie cylindrique est invariante par translation parallèlement à un
axe noté (Oz) (tout plan perpendiculaire à l’axe (Oz) est plan de symétrie), et elle est
de révolution autour de cet axe (tout plan contenant l’axe (Oz) est plan de symétrie).

Utilisant les coordonnées cylindriques d’axe (Oz), nous avons (doc. 12) :

3.2.2. Distribution à symétrie sphérique
La distribution à symétrie sphérique est invariante par rotation autour de tous les
axes passant par le centre de symétrie.

Remarquons, de plus, que tout plan contenant l’origine est plan de symétrie de la
distribution.

Utilisant les coordonnées sphériques r , � et " avec l’origine au point centre de
symétrie, nous avons (doc. 13) :

� Pour s’entraîner : ex. 1, 2, 3, 4, 5 et 7.

Distribution à symétrie sphérique : � (r , 	 , � ) � � (r) .

Distribution à symétrie cylindrique : � (r , 	 , z ) � � (r) .

La charge d’une distribution invariante par rotation autour d’un axe (Oz)
est telle que � (r , 	 , z) � � (r , z) .
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1. Distributions de charges

Doc. 10. Distribution invariante par

période

�

z
x

y

Doc. 11. Distribution invariante par
rotation autour d’un axe (Oz).

z

�

M'

M

Doc. 12. Distribution à symétrie cylin-
drique.

�

Doc. 13. Distribution à symétrie sphé-
rique.

�
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1. Distributions de charges

C Q F R

● CHARGE ÉLECTRIQUE
• L’unité de charge est le coulomb, noté C .

• Les charges observées sont toujours des multiples entiers de la charge élémentaire e (e = 1,602 . 10–19 C) :
la charge électrique est quantifiée.

• Pour un système fermé, c’est-à-dire n’échangeant pas de matière avec l’extérieur, la charge électrique
reste constante.

● DISTRIBUTION DE CHARGES
À une échelle macroscopique, les distributions de charges (entités microscopiques) seront représentées à
l’aide d’une grandeur nivelée à une échelle mésoscopique : la densité de charges.

• Charges volumiques

La charge contenue dans un volume élémentaire dt est :

dq = r dt .

La densité volumique r est mesurée en C . m–3 .

• Charges surfaciques

La charge portée par une surface élémentaire dS s’écrit :

dq = s dS .

La densité surfacique s est mesurée en C . m–2 .

• Charges linéiques

La charge portée par une longueur élémentaire d� est :

dq = l d� .

La densité linéique l est mesurée en C . m–1 .

● SYMÉTRIE DES DISTRIBUTIONS
• Une distribution est symétrique par rapport à un plan P si, M et M’ étant deux points symétriques par
rapport à P, sa densité de charge vérifie :

r (M) = r (M’) .

• Une distribution est antisymétrique par rapport à un plan P* si, M et M’ étant deux points symétriques par
rapport à P*, sa densité de charge vérifie :

r (M) = – r (M’) .

• Une distribution, illimitée dans la direction de l’axe ∆ , est invariante par translation suivant ∆ si, pour tout
point M et son translaté M’, sa densité de charge vérifie :

r(M) = r(M’) .

• Une distribution est à symétrie cylindrique (coordonnées cylindriques d’axe (Oz)) si :

r(r , q , z) = r(r) .

• Une distribution est à symétrie sphérique (coordonnées sphériques au centre de symétrie) si :

r (r , q , j) = r (r) .
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Du tac au tac (Vrai ou faux)

1. Un cylindre de hauteur h est invariant
par translation le long de son axe.

❑ Vrai ❑ Faux

2. La charge volumique r(M) est une grandeur
quantifiée.

❑ Vrai ❑ Faux

3. Un ensemble de trois charges ponctuelles
quelconques ne présente aucun élément
de symétrie.

❑ Vrai ❑ Faux

4. Une distribution volumique de charges suivant
une loi de la forme r(r) (r 
 0) est une distri-
bution à symétrie cylindrique ou sphérique.

❑ Vrai ❑ Faux

5. Une distribution volumique de charges suivant
une loi de la forme r(z) est une distribution à
symétrie cylindrique.

❑ Vrai ❑ Faux

� Solution, page 16.

Avez-vous retenu l’essentiel ?

✔ Citer trois propriétés de la charge électrique.
✔ Citer les trois échelles de description et d’étude de la matière.
✔ Quels sont les caractéristiques d’une description des objets à l’échelle mésoscopique ?
✔ Citer trois grandeurs caractérisant les distributions de charges décrites à l’échelle mésoscopique.
✔ Lors de l’étude des propriétés de symétrie d’un objet, quelles sont les invariances qu’il convient d’examiner ?
✔ Quels sont les éléments de symétrie d’un doublet de charges ponctuelles opposées ± q ?

Contrôle rapide



Cerceau chargé

Quelles sont les symétries de
la distribution circulaire uni-
forme ci-contre ?

Sphère uniformément chargée

Soit une sphère de rayon a, de centre O, portant une réparti-
tion surfacique uniforme de charges � .
Quelles sont les symétries de cette répartition de charges ?

Cube chargé

Soit un cube d’arête a. Les
faces ABCD et A’B’C’D’
portent des charges surfa-
ciques uniformes opposées
� et � �.

Quelles sont les symétries de
cette distribution ?

Sphère polarisée

Une sphère de rayon a porte la densité surfacique de charges :
� � �0 cos �

en coordonnées sphériques de centre O confondu avec le
centre de la sphère.
Quelles sont les symétries de cette distribution ?

Cylindre chargé avec cavité

Un cylindre infini d’axe (Oz),
comportant une partie cylin-
drique évidée d’axe (O’z),
porte une charge volumique
� uniforme.

Quelles symétries peut-on
attribuer à cette distribution
de charges ?

Modélisation d’une densité surfacique
de charges

Nous avons supposé au § 2.4. que la répartition de charges
était uniforme à l’intérieur de l’écorce d’épaisseur h , ce qui
n’est pas nécessaire. Considérons par exemple un milieu occu-
pant le demi-espace z � 0 , chargé au voisinage de sa sur-
face avec la densité volumique � � �0 exp , où h est une
distance petite à l’échelle macroscopique.
1) Pour quelle profondeur z0
la couche comprise entre
z � 0 et z � z0 contient-elle
90 % de la charge portée par
le milieu ?

2) Définir la densité surfa-
cique de charges � équivalente.

3) Commenter la situation
limite �0 → ∞ et h → 0 ,
avec �0 h � �0 � cte .

Hélice infinie

Le schéma ci-dessous représente une hélice d’axe (Oz),
correspondant à l’ensemble des points de coordonnées carté-
siennes :

(hélice gauche)

lorsque � varie de � min à � max .

Cette hélice porte une densité linéique de charges uniforme � .
Quelles symétries suggère une telle distribution ? Examiner
le cas d’une hélice infinie.

Modélisation d’une densité linéique
de charges

Un tube cylindrique, à section circulaire de rayon a, est chargé
uniformément avec la densité volumique r. Le rayon a étant
petit à l’échelle macroscopique, on modélise le tube par un
fil portant la densité linéique l . Exprimer l en fonction de
r et a.

Exercices
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1. Distributions de charges
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Les plans (xOy) et (xOz) sont des plans-miroirs de la distribution : ce sont

des plans de symétrie des charges.
Le plan (yOz) est un plan-antimiroir : c’est un plan d’antisymétrie des charges.

Tout plan passant par le point O centre de la sphère est un plan de symétrie de

charges et tout axe passant par O est un axe de révolution.

Le plan � parallèle aux deux faces considérées et passant par le centre O

du cube est un plan d’antisymétrie (schéma a) (� � �*).
Les plans �1 , �2 , �3 et �4 (�i � � i ) indiqués sur le schéma b) sont des plans
de symétrie de charges.

La densité surfacique de charges

ne dépend pas de l’angle  : la distribu-
tion est invariante par rotation autour de
l’axe (Oz). Changer � en π � � inverse
le signe de � ; le plan (xOy) � �*, cor-
respondant à : , est un plan d’an-

tisymétrie de cette distribution de charges.

Cette distribution est invariante par translation parallèlement à l’axe (Oz).

Le plan (xOz), qui contient l’axe (O’z) de la partie évidée, est un plan-miroir de la dis-
tribution ; c’est un plan de symétrie de la distribution de charges. La distribution n’est
pas invariante par rotation autour de l’axe (Oz) si O’ est différent de O .

1) Constatons que la densité volumique de la charge devient rapidement négli-

geable au-delà de la profondeur h :

� � � 0 pour z � 0 ; � 0 � pour z � � (1,6) h ; � 0 � ,

pour z � � 7h .

La charge comprise dans un volume cylindrique d’axe (Oz) , de base d S et d’épais-
seur | z |, est :

.

Elle vaut d Qtot � � 0 h d S si l’épaisseur est infinie et 90 % de cette valeur pour
Z � z 0 � � h ln (10) � � 2,3 h . Nous voyons ainsi que l’essentiel de la charge du
milieu est dans une épaisseur de l’ordre de grandeur de h .

2) La répartition peut donc être considérée comme surfacique si h est assez faible :

�d S � � 0

�∞
� (z) d S d z � � 0 h d S , soit � � � 0 h .

3) Cette situation limite n’est qu’une idéalisation du cas envisagé, et � 0 coïncide
avec la densité surfacique de charges définie précédemment. Notons que l’écriture
h → 0 n’a de signification qu’à l’échelle macroscopique : h est de l’ordre de
	 (longueur mésoscopique) .

Nous pouvons penser aux symétries suivantes :

• invariance par translation, parallèlement à l’axe (Oz), d’une longueur multiple entier
du pas p de l’hélice ;

• symétrie par rapport à un plan contenant l’axe (Oz), ou plus généralement symétrie
de révolution autour de (Oz) ;

• symétrie par rapport à un plan perpendiculaire à l’axe (Oz), coupant l’hélice en deux
parties de longueurs égales.

De fait, un examen plus attentif nous montre que l’hélice finie ne possède aucune de
ces symétries élémentaires.

L’hélice infinie ne possède que la première des trois symétries évoquées précédemment.

Un élément d	 de longueur du fil

porte la charge : dq = ld	 et un élément de
longueur du tube porte la charge
dq = rπa2d	.

En comparant les deux expressions de la
charge élémentaire, on en déduit que
l = rπa2 .
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Corrigés
Solution du tac au tac, p. 14.
1. Faux ;
2. Faux ;

3. Faux ;
4. Vrai ;
5. Faux.

�

O x

AB A'B'

CD C'D'

a)

�

AA' BB'

DD' CC'

b)

4 �3

�2

�1

Ox

y

�

 

x

z

O a

M

a

d�



17

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

Champ
électrostatique 2

Après avoir jeté les bases de la théorie
de la résistance des matériaux (1773),

étudié le frottement solide (1779),
puis décrit les lois de la torsion (1784),

Charles-Augustin Coulomb (1736-1806)
met au point une balance de torsion très sensible

qui lui permet de décrire l’interaction
entre particules chargées statiques.

La loi qu’il énonce en 1785, et qui porte son nom,
a depuis été vérifiée avec une précision croissante.

Le champ électrostatique
est la grandeur qui permet de décrire

les effets de charges électriques statiques
sur l’espace qui les entoure.

O B J E C T I F S

■ Interaction électrostatique.
■ Champ électrostatique.
■ Propriétés de symétrie.

P R É R E Q U I S

■ Distribution de charges :
• modélisations ;
• symétries.
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2. Champ électrostatique

Loi de Coulomb1
1.1. Force d’interaction entre charges statiques
Deux charges ponctuelles q1 et q2 , immobiles aux points M1 et M2 , exercent l’une
sur l’autre une force :
• proportionnelle au produit des charges ;
• inversement proportionnelle au carré de la distance les séparant ;
• dirigée parallèlement à M1M2 .

Cette force est répulsive si les charges sont de même signe, attractive sinon.

e→1 → 2 désigne le vecteur unitaire dirigé de M1 vers M2 (doc. 1).

Elle est opposée à la force exercée par q2 sur q1 : f
→

1→ 2 � – f
→

2→ 1 ; elle obéit au
principe de l’action et de la réaction.

Notons l’analogie formelle avec la loi d’attraction gravitationnelle, en remplaçant
les masses gravitationnelles m1 et m2 par les charges q1 et q2 , et la constante de
gravitation changée de signe – G par la constante d’interaction électrostatique

: f
→

1 → 2 � – G m1m2 .

La constante � 0 , permittivité électrique du vide, est voisine de et se

mesure en F. m– 1 , F désignant le farad (unité de capacité).

La permittivité électrique � de l’air étant très voisine de � 0 (� � � 0 � r , avec
� r � 1,000 6 ), la loi de Coulomb reste valable dans l’air.

La force de Coulomb exercée par la charge q1 sur la charge q2 (les deux

charges étant dans le vide) est f
→

1 → 2 � .

Intensité des forces électrostatiques
et gravitationnelles

La constante de gravitation vaut G = 6,67 . 10– 11 SI .
La constante d’interaction électrostatique vaut :

= 9 . 109 SI .

1) Précisez les unités du Système International cor-
respondant à ces deux constantes.

2) Comparer les interactions gravitationnelles et
électrostatiques entre deux électrons.
Données : charge – e � – 1,6 . 10– 19 C et masse
m � 9,1 .10– 31 kg .

1) Une force s’exprimant en kg .m .s– 2 , nous avons :
[G] � [force � distance2 � masse– 2]

� kg– 1 . m3. s– 2

et � [force � distance2 � charge– 2]

� kg . C– 2 . m3 . s– 2 .

En réalité, e0 s’exprime en farad par mètre, où le farad
est une unité de capacité et la constante précédente
s’évalue en F–1. m .

2) La dépendance de ces interactions en fonction de la
distance séparant les deux électrons étant la même pour
les deux interactions, nous avons simplement :

� 4,2 . 1042 .

Cet ordre de grandeur justifie que pour l’étude de mou-
vements de particules chargées, il est en général tout à
fait inutile de prendre en compte les forces de gravitation.

Application 1

Doc. 1. Forces d’interaction électro-
statique entre deux charges statiques
(q1q2 � 0).

M1(q1)

M2(q2)

f1 2

f2 1

e1 2

Doc. 2. Forces d’interaction gravita-
tionnelle entre deux masses statiques.

M2(m2)

M1(m1)

nf1n2
ne1n2

nf2n1



1.2. Champ d’une charge ponctuelle
La force exercée par q1 sur q2 se met sous la forme :

f
→

1 → 2 � q2 E
→

1 (M2) , avec E
→

1 (M2) � .

E
→

1 (M2) est le champ électrostatique créé par la charge q1 (charge source) au point
M2 dans le vide (ou dans l’air).

Le champ créé par q1 caractérise l’influence de celle-ci sur l’espace qui l’entoure.

Ainsi, le champ électrostatique créé dans l’espace par une particule de charge
q , immobile au point origine O du repère de coordonnées sphériques, a pour
expression (doc. 3) :

Champ d’une distr ibution2
2.1. Principe de superposition
L’expérience conduit à postuler que les interactions électrostatiques ont des effets
linéaires.

Par exemple, la force subie par une charge q de la part d’un ensemble de N charges
q1 , q2 , … , qN est la somme des N forces qu’exercent individuellement les charges
q i (i � 1 , … , N) lorsqu’elles sont mises seules en présence de la charge q . Le champ
créé par les N charges est donc la somme des N champs créés par chaque charge.

Nous postulons donc la linéarité des effets, ce qui constitue le principe de
superposition.

2.2. Champs créés par des distributions de charges

2.2.1. Charges ponctuelles

Utilisant le principe de superposition, nous avons immédiatement :

2.2.2. Généralisation aux distributions de charges

Nous appliquerons le principe de superposition à une distribution de charges $ après
l’avoir décomposée en un ensemble de fragments élémentaires chargés (mésoscopiques)
assimilés à des charges ponctuelles.
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2. Champ électrostatique

Doc. 3. Champ d’une charge ponc-
tuelle (q � 0).

q

M

E(M)k

Doc. 4. Distribution de charges ponc-
tuelles.

PN(qN)

P2(q2)

P1(q1)

M

r1

r2

rN

r

O

Doc. 5. Distribution de charges $ .

M

�

dqP

P

.

Le champ électrostatique E
→

créé en M par diverses charges qi situées aux
points Pi est donné par :

E
→

(qi , i � 1 , … , N) (M) � .



Notons P un point décrivant l’espace occupé par la distribution. Une partie
élémentaire de $, située au voisinage de P, contient une charge dqP et crée un
champ élémentaire dE

→

au point d’observation M. Nous obtenons le champ total
créé en M par la distribution $ par superposition des champs de chacune de ses
parties élémentaires selon :

On écrira cette expression plus rigoureusement sous la forme :

.

Il nous reste à préciser l’élément d’intégration dqP en fonction de la nature de la
distribution considérée.

2.2.2.1. Distribution volumique

Un volume élémentaire d� contient une charge :

dqP � �(P) d� ;

nous écrivons donc :

2.2.2.2. Distribution surfacique

Une surface élémentaire dS contient une charge :

dqP � �(P) dS ,

et le champ créé en M par $ est :

2.2.2.3. Distribution linéique

Une longueur élémentaire d l contient une charge :

dqP � �(P) d	 ,

soit :
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2. Champ électrostatique

E
→

� (M) � .



2.3. Le champ électrostatique est-il toujours défini ?
Les expressions précédentes ne sont a priori applicables qu’aux cas des distribu-
tions d’extension finie (distributions physiques), pour assurer la convergence des
intégrales. Il existe toutefois des cas de distributions d’extension infinie pour les-
quels ces intégrales convergent.

Dans le cas d’une distribution volumique de charges r (P) finie, d’extension quel-
conque, l’intégrale :

E
→

1 (M) =

converge toujours, quel que soit le point M .

Il n’en est plus de même pour les distributions surfaciques et linéiques : le champ
E
→

(M) n’est pas défini sur ces distributions.

Prenons l’exemple de l’Application suivante.

� Pour s’entraîner : ex. 1.
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2. Champ électrostatique

Champ créé par un segment
uniformément chargé

Sur l’axe Ox, une charge est répartie uniformément avec
la densité linéique l entre les points A’(– a) et A(a).
Déterminer le champ E

→

(M) créé par cette distribution
en un point M de l’axe (Ox), extérieur au segment A’A.

Notons x l’abscisse du point M et X l’abscisse d’un
point P pris sur la distribution de charges. Associons
au point P la charge élémentaire dqP = ldX .

En un point M tel que x > a, la charge dqP crée en
M le champ élémentaire :

.

En superposant les champs créés par chacune des par-
ties élémentaires de la distribution, il vient :

(1)

expression valable pour x > a.

En revanche, en un point M tel que x < – a, le champ
élémentaire dE

→

est dirigé vers les x négatifs :

dE
→

=

et l’intégration conduit alors à :

E
→

(M) = (2)

expression valable pour x < – a.

À noter : Quand x tend vers a ou – a, nous consta-
tons que les expressions (1) et (2) tendent vers l’infini,
preuve que le champ n’est pas défini par ces expressions
sur la distribution.

Application 2

Doc. 6.

A’ (a) P A M x

– a O X a x
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Dans l’Application précédente, il est impossible de calculer le champ électrique en
un point du segment AA’ .

Il en est de même lors d’une distribution surfacique de charges (cf. Application 8).

Rappelons que ces modélisations linéiques et surfaciques n’existent que parce que
localement la densité volumique de charge r est très grande, voire « infinie ».

C’est le caractère « infini » de r qui nous interdit de définir le champ électrosta-
tique en un point d’une distribution linéique ou surfacique.

Topographie du champ3
3.1. Lignes de champ

3.1.1. Définition

3.1.2. Mise en évidence expérimentale des lignes de champ

La visualisation des lignes de champ électrostatique peut s’obtenir en saupoudrant
des particules isolantes, neutres (grains de semoule ou graines légères) à la surface
d’un fluide dans lequel (et à la surface duquel) existe un champ électrique E

→

.

Ces particules ont la propriété de s’aligner parallèlement au champ E
→

grâce à
l’apparition d’une dissymétrie de charges due au champ E

→

(doc. 8).

La répartition des charges permet de plus aux grains de s’aligner les uns derrières
les autres en « suivant » les lignes de champ (les charges de signes opposés
s’attirent).

La présence du liquide permet aux grains de s’orienter plus « facilement » que
sur une surface solide.

Chaque particule est alors assimilable à un élément dM
→

parallèle au champ local
en M .

Sur le document 9, nous visualisons des lignes de champ par ce procédé.

3.1.3. Équation d’une ligne de champ

La définition des lignes de champ nous permet d’affirmer qu’un élément de lon-
gueur dM

→

le long d’une ligne de champ est parallèle au champ E
→

. L’équation dif-
férentielle (vectorielle) d’une ligne de champ est donc :

dM
→

� E
→

� 0
→

.

Le champ est continuellement tangent à des courbes appelées lignes de champ
(doc. 7). Ces lignes sont orientées par le sens du champ.

Le champ électrostatique en un point des sources n’est pas défini lorsque
ces sources sont modélisées par une densité surfacique ou linéique des
charges.
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2. Champ électrostatique

Doc. 9. Entre deux plaques parallèles,
un liquide isolant supporte des graines
très légères. Lorsque les plaques sont
sous tension, les graines sont alignées
selon la direction du champ électrosta-
tique.

Doc. 7. Ligne de champ.

E (M)

M

M’

ligne de champ

Doc. 8. Matérialisation d’une ligne
de champ.

+
+

+

+
+

–

–

–

– –

E

E



Nous obtiendrons la ligne de champ issue d’un point initial donné par intégration
de cette équation différentielle.

Par exemple, en coordonnées cartésiennes, nous écrirons :

.

3.2. Tube de champ

3.3. Points de champ nul, points singuliers
Deux lignes de champ ne se coupent pas en un point M où le champ électrostatique
est défini et non nul (doc. 11) ; sinon la direction du champ, donc le champ lui-même,
ne serait pas défini en ce point.

Deux lignes de champ peuvent se couper en M si :

• le champ est nul au point M : M est appelé point de champ nul (ou point
d’arrêt) ;

• le champ n’est pas défini au point M : il y a une charge ponctuelle en M, ou bien
M appartient à une surface ou à une ligne chargée.

Quelques lignes de champ d’un système de deux charges ponctuelles q et Q sont
représentées sur les documents 12a (cas Q � 2q � 0) et 12b (cas Q � – 2q � 0 ).

Nous pouvons observer que les lignes de champ divergent à partir des charges posi-
tives, convergent vers les charges négatives, ou « aboutissent » à l’infini. Elles se
coupent au niveau des charges ainsi qu’aux points de champ nul A et A’.

L’ensemble des lignes de champ s’appuyant sur une courbe fermée (ou
contour) C engendre une surface � appelée tube de champ, représentée sur
le document 10.

23

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

2. Champ électrostatique

q 2qA
A'

q –2q

Doc. 12. Lignes de champ d’un système de deux charges ponctuelles q et Q.
a. Q � 2q . b. Q � – 2q .

Doc. 10. Tube de champ.

tube de champ (�)

lignes de champ

contour C

Doc. 11. En M , le champ Ek est soit
nul soit non défini.

?

M



� Pour s’entraîner : ex. 10.

Propriétés de symétries du champ4
4.1. Utilisation des symétries et antisymétries
Le calcul du champ à partir des intégrales est souvent assez pénible. Il convient alors
d’utiliser les symétries des distributions, quand elles existent, pour le simplifier.

Certaines simplifications (éliminations de certaines coordonnées du point de
calcul M, annulation de composantes du champ…) peuvent alors être effectuées
sans aucun calcul, à l’aide de considérations de symétries ; c’est pourquoi nous
étudions ici les propriétés de symétrie et d’antisymétrie du champ électrostatique.

4.2. Symétries élémentaires
4.2.1. Symétrie plane

Soit une distribution $ invariante par symétrie plane 6 par rapport à un plan � .

En un point M du plan de symétrie, considérons les champs élémentaires dE
→

P(M)
et dE

→

P’(M) créés par les deux éléments de même volume d� associés aux points
P et P’ � 6 (P) . Leur somme dE

→

P � dE
→

P’ est un vecteur parallèle au plan � .
Cette propriété est valable pour tous les couples de points symétriques P et P’ qui
décrivent l’ensemble de la distribution. Par conséquent :

Sur un plan-miroir � d’une distribution de charge � , le champ élec-
trostatique créé est parallèle au plan � .
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2. Champ électrostatique

Sur le document 12, il apparaît que le champ est nul en
A et en A’. Déterminer les abscisses de ces points en
fonction de a .

Notons (Ox) l’axe portant les charges et choisissons
l’origine O à égale distance des charges dont les abs-
cisses sont a pour la charge Q et – a pour la charge
q . Les points d’arrêt sont sur l’axe (Ox) puisque les
champs des deux charges doivent être colinéaires afin
de pouvoir s’annuler.

En un point d’arrêt d’abscisse – a < x < a, nous avons :

= 0

d’où l’équation du second degré :
(Q – q ) x2 + 2 a (Q + q) x + (Q – q) a = 0 (1)

dont le discriminant réduit est : ∆’ = 4Qq. Le point
d’arrêt n’existe que si Q et q sont de même signe donc
ici Q = 2 q. L’équation (1) s’écrit alors :

x2 + 6 ax + a2 = 0.

La solution comprise entre – a et a est :

x = (– 3 + ) a = – 0,172 a.

De même, hors de cet intervalle, les points d’arrêt satis-
font à la relation :

= 0

ce qui conduit à l’équation du second degré :

(Q + q ) x2 + 2 a (Q – q ) x + (Q + q ) a = 0 (2)

dont le discriminant réduit est cette fois : ∆’ = – 4 Qq.
Le point d’arrêt n’existe que si Q et q sont de signes
contraires.

Donc Q = – 2 q et l’équation (2) s’écrit encore :

x2 + 6 ax + a2 = 0.

La solution extérieure à [– a, a] est cette fois :

x = (– 3 – ) a = – 5,83 a.

La vérification de ces résultats peut être effectuée direc-
tement sur les simulations du document 12.

Application 3

dEP dEP’

M

dq dq
P’ P

�

M

E

�

a)

b)

Doc. 13. Symétrie plane.
a. Contributions élémentaires de P et P’.
b. Champ total sur le plan-miroir.



De même (cf. Application 4), nous pouvons vérifier que :

Remarque : Dans l’Application 2, nous vérifions également que E (x) = – E (– x)
pour |x | > a .

4.2.2. Antisymétrie plane
Pour une distribution $ possédant un plan d’antisymétrie �* et pour un point
M de ce plan, il suffit de changer le sens du champ élémentaire dE

→

P’ dans les
raisonnements précédents. Nous avons alors (doc. 15a et b) :

Plus généralement, en reprenant l’Application 4, nous pouvons aussi affirmer
(doc. 15c) :

Exemple de plan-miroir �
Sur le document 16a, quatre charges ponctuelles sont placées dans le plan (xOy)
– q en (2, 2) et (– 2, 2), 2q en (1, – 1) et (– 1, – 1). Le plan (yOz) est plan-miroir
de cette distribution. Quelques lignes de champ ont été tracées sur le plan (xOy).

Au point M’ symétrique du point M par rapport au plan-antimiroir �*
d’une distribution de charges � , le champ électrostatique E’

→

est l’opposé
du symétrique du champ E

→

créé par la distribution en M .

Sur un plan-antimiroir �* d’une distribution � , le champ électrostatique
créé est perpendiculaire au plan �* .

Aux points M et M’ symétriques par rapport à un plan-miroir � d’une
distribution de charges � , les champs électrostatiques E

→

et E’
→

sont
symétriques l’un de l’autre.
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2. Champ électrostatique

Symétrie plane et champ électrostatique

À l’aide d’un raisonnement analogue au précédent,
comparer le champ électrostatique en un point M et
en son symétrique M’ par rapport au plan-miroir P
d’une distribution, lorsque le point M occupe une
position quelconque dans l’espace.

Le document 14 met en évidence la propriété recher-
chée : le champ E’

→

au point M’ est le symétrique vec-
toriel du champ E

→

au point M .

Le résultat précédent est ainsi vérifié.

Application 4

dEP'

dE'P dE'P

dEP'

M' M

dq dq
P' P

MM'

EE'

� �a) b)

Doc. 14. Symétrie plane et champ électrostatique.



Nous constatons que les lignes de champ qui approchent le plan (yOz) lui sont en
général tangentes : sur le plan-miroir, le champ électrostatique est tangent au plan.
Notons qu’au point A, où se coupent quatre lignes de champ perpendiculaires, deux
de ces lignes sont perpendiculaires au plan-miroir. Ceci ne contredit pas l’appar-
tenance du champ à ce plan, car le point A est un point de champ nul. Le point A’
est un autre point de champ nul.
Comme nous l’avons vu précédemment, en deux points M et M’ symétriques par
rapport au plan (yOz), les champs électrostatiques E

→

et E’
→

sont symétriques.

Exemple de plan-antimiroir �*
Sur le document 16b, quatre charges ponctuelles sont placées dans le plan (xOy) : q
en (2, 2) , – q en (– 2, 2) , – 2q en (1, – 1) et 2q en (– 1, – 1). Le plan (yOz) est
plan-antimiroir de cette distribution. Quelques lignes de champ ont été tracées sur
le plan (xOy).

Les lignes de champ coupent le plan (yOz) perpendiculairement : sur le plan-
antimiroir, le champ électrostatique est orthogonal au plan.
Notons qu’au point A se coupent quatre lignes de champ non perpendiculaires à
(yOz). Le point A est un point de champ nul, et le caractère orthogonal à (yOz) du
champ n’est pas mis en défaut.
Plus généralement, au point M’ symétrique de M par rapport au plan (yOz),
le champ électrostatique E’

→

est l’opposé du symétrique du champ E
→

en M .

� Pour s’entraîner : ex. 2.
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2. Champ électrostatique

Doc. 16a. Symétrie des champs électrostatiques E
→

et E’
→

par rapport au plan de symétrie P = (y, O, z).

MM'

A'

EE'
A

–q –q

2q2q

�

Doc. 16b. Le champ électrostatique E’
→

est l’opposé du symé-
trique de E

→

par rapport au plan d’antisymétrie P* = (y, O, z).

E

E

E'

MM'

M' M

E'

�*

�
–q +q

–2q+2q

Doc. 15. Antisymétrie plane.

a. b.

dEP

dE'P'

M

– dq dq

P' = �(P)
P

�*

M
E

�* �

MM'

E'

E

*c.



4.2.3. Invariance par translation

Lorsqu’une distribution $ est invariante par une translation de �z parallèlement à
l’axe (Oz), un observateur percevra la même distribution s’il est au point de coor-
données cartésiennes (x , y , z) ou en un point translaté du précédent de coordon-
nées (x , y , z � n�z), où n est un entier. Le champ sera donc identique en ces deux
points :

E
→

(x , y , z + n∆z) = E
→

(x , y , z) (doc. 17).

4.2.4. Invariance par rotation

Considérons maintenant une distribution $ invariante par une rotation 5 d’angle

a � (n entier) autour de l’axe (Oz). Deux observateurs placés aux points

M et M’ � 5 (M ) percevront la même distribution (le document 19 a été tracé

avec n � 6 ).

Les champs électrostatiques détectés aux points M et M’ ont les mêmes
composantes dans les systèmes de coordonnées (Ox, Oy, Oz) et (5 (Ox), 5 (Oy),
5 (Oz)) respectivement.

Le champ au point M’ est ainsi le même qu’au point M, à une rotation d’angle a
autour du vecteur e→z près.
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2. Champ électrostatique

Distribution invariante
par translation parallèlement à un axe

Indiquer la forme du champ électrostatique créé par
une distribution invariante par toute translation
parallèlement à (Oz).

L’invariance par toute translation implique que
le champ est le même en tous points de coordonnées
(x, y, z) quelle que soit la valeur de z, donc
E
→

(x, y, z) � E
→

(x, y) .

Tout plan perpendiculaire à l’axe (Oz) est un plan de
symétrie de la distribution, et, sur ce plan, le champ
est parallèle au plan.

Finalement, le champ est de la forme :

E
→

(x, y, z) � E
→

(x, y) � Ex (x, y) e→x � Ey (x, y) e→y .

Remarque

Cette forme est simplifiée, mais ne constitue pas la forme
la plus générale du champ créé par une distribution inva-
riante par translation. Le cas d’un champ électrosta-
tique est en fait plus restrictif : le champ statique E

→

possède des propriétés supplémentaires, que nous n’ex-
ploitons pas ici, qui font que les composantes Ex (x, y)
et Ey (x, y) ne sont pas indépendantes. Nous revien-
drons sur ce point au chapitre 3.

Application 5

Doc. 18. �
Distribution invariante par translation

parallèlement à un axe.

� �

M

E z

Doc. 19. Distribution invariante par
rotation.

E'

M'

E(M)
R(Oy)

R(Ox)

M

Oy

Oz Ox�

2
6
π

Doc. 17. Distribution invariante par
translation.

�

M

(M) E

E
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4.2.5. Le champ électrostatique est un vecteur polaire

Les études précédentes nous amènent à une conclusion simple : lors d’opéra-
tions de symétrie (symétrie plane, translation, rotation autour d’un axe) appli-
quées à la distribution de charges $ , le champ électrostatique subit la même
opération.

Nous appelons vecteur polaire un vecteur dont le champ a les mêmes propriétés
de symétrie que ses sources.

Pour qualifier cette propriété, nous trouvons aussi le terme « vrai vecteur », par
opposition à « pseudo-vecteur ».

Nous reviendrons sur cette distinction lors de l’étude du champ magnétique.

Le champ électrostatique est un objet tridimensionnel ayant les propriétés
de symétrie d’un vecteur polaire ou « vecteur vrai ».

Cela signifie qu’il a les mêmes propriétés de symétrie que la distribution des
charges qui le créent.

28

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

2. Champ électrostatique

Champ d’une distribution de symétrie
de révolution

Indiquer la forme du champ d’une distribution pos-
sédant la symétrie de révolution par rapport à l’axe
(Oz).

Pour une distribution de révolution autour de l’axe
(Oz), tout plan contenant cet axe est plan de symé-
trie, donc en coordonnées cylindriques, la compo-
sante orthoradiale Eq est nulle :

E
→

(r , � , z) � E r (r , � , z) e→r � Ez (r , � , z) e→z .

L’invariance par rotation d’un angle quelconque autour
de l’axe (Oz) indique de plus que les coordonnées
cylindriques du champ ne dépendent pas de � .
Ainsi, le champ d’une distribution à symétrie de révo-
lution par rapport à l’axe (Oz) a la forme :

E
→

(r , � , z) � E r (r , z) e→r � Ez (r , z) e→z .

Notons que le vecteur champ dépend encore de l’angle
� par l’orientation de e→r .

Remarque : De même que pour l’Application 5, signa-
lons que les composantes Er (r , z) et E z (r , z) d’un
champ électrostatique ne sont pas indépendantes.

Application 6

�

z

E
�

M

Doc. 20. Champ d’une distribution à symétrie de révo-
lution : E

→

est dans un plan contenant l’axe z’z .

Le terme « opération de symétrie »
désigne ici une isométrie, c’est-à-
dire un déplacement qui laisse
inchangées les distances.
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2. Champ électrostatique

4.3. Symétries multiples
Ces cas correspondent à l’existence de plusieurs symétries élémentaires. Les cas
de distributions invariantes par translation parallèlement à un axe ou de révolution
autour d’un axe en font partie.

Citons encore deux cas de symétrie élevée que nous traiterons comme application
directe de l’utilisation des propriétés de symétrie élémentaires :

• le champ d’une distribution à symétrie cylindrique d’axe (Oz) (la répartition de
charges n’est fonction que de la distance à l’axe (Oz)) est, en coordonnées cylin-
driques, de la forme E

→

(r, �, z) � E (r) e→r ;

• le champ d’une distribution à symétrie sphérique de centre O est, en coordonnées
sphériques, de la forme E

→

(r, �,  ) � E (r) e→r .
� Pour s’entraîner : ex. 3 et 4.

4.4. Discontinuités du champ à la traversée
d’une distribution surfacique

Nous avons déjà signalé que le champ électrostatique n’était pas défini sur les dis-
tributions surfaciques. En outre, à la traversée d’une surface électrisée, de la face

➀ vers la face ➁, la composante normale du champ subit une discontinuité et
la composante tangentielle est conservée (doc. 22).

Champ d’une circonférence chargée
en un point de son axe

Étant donné une circonférence, de centre O , de rayon
R , uniformément chargée avec la densité linéique l ,
déterminer le champ E

→

(M) en un point M de son axe.

L’axe du disque est un axe de révolution pour la dis-
tribution de charges. Une rotation autour de cet axe
conserve le champ en chacun de ses points, donc :

E
→

(M) = Ez .

Soit (R, q ) les coordonnées polaires d’un point P de
la circonférence. L’élément de longueur associé à P
porte la charge élémentaire dq = lRdq ; le champ
élémentaire associé s’écrit :

avec r = PM et el vecteur unitaire de l’axe PM.

D’où la composante axiale de ce champ élémentaire :

et, par intégration sur la circonférence :

.

En conclusion, le champ créé s’établit à :

.

Application 7

M

O

Rq

a
r

P

z

y

x

nE(M)ndE

nez

ne

Doc. 21. Champ d’une circonférence chargée.

Doc. 22. Discontinuités du champ à
la traversée d’une distribution sur-
facique.

sP
➀

➁

nE2⊥

nE1�

nE2

n nE1//
= E2//

nE2

nn12
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2. Champ électrostatique

Champ d’un disque uniformément chargé

Déterminer le champ E
→

(M) en un point de l’axe d’un
disque de rayon R uniformément chargé avec la den-
sité surfacique s uniforme.

L’axe du disque est un axe de révolution pour la dis-
tribution des charges donc, comme cela a été vu dans
l’Application 7, le champ est colinéaire à cet axe :

E
→

(M) = Ez (z) el 3 .
Notons (r, q) les coordonnées polaires d’un point P
du disque et d2S = dr rdq l’élément de surface (infi-
niment petit d’ordre deux) associé en coordonnées
polaires (doc. 23).
La charge élémentaire d2q = s d2S = s rdrdq, loca-
lisée en P, crée en M le champ élémentaire :

.

La composante axiale de ce champ est :

.

Il nous faudra deux intégrations pour obtenir l’ex-
pression de Ez .

a) En maintenant r constant, intégrons sur q, ce qui
revient à calculer le champ créé en M par une bande
circulaire de rayon r et d’épaisseur dr :

.

Remarque : Nous aurions pu aussi utiliser les résultats
de l’Application 7.

b) Nous devons maintenant intégrer sur r . Il est com-
mode pour cela, compte tenu de la dépendance de r et
de a à r, de prendre comme variable d’intégration a .

• Pour z > 0, il vient : r = et r = z tan a .

Donc et, après simplification :

.

Par intégration, il vient :

,

d’où l’expression du champ en M :

.

• En un point symétrique de M par rapport au disque,
nous devrions avoir Ez(– z) = – Ez(z), ce qui n’est pas
le cas de l’expression précédente, établie avec la res-
triction z > 0. En reprenant les calculs pour z < 0, on
voit que l’expression du champ valable pour tout z est :

c’est-à-dire :

• si z > 0 :

• si z < 0 : .

• En traversant le disque dans le sens des z croissants,
la composante tangentielle du champ est conservée et
sa composante normale subit la discontinuité :

.

Remarque : Il nous est impossible de définir le champ
électrostatique en un point du disque.

Le tracé du graphe de Ez(z) est donné sur le docu-
ment 24.

Application 8

M

O

R

rq

amax

a r

P

z

y

x

nE(M)
nd2E

nez

Doc. 23. Champ d’un disque uniformément chargé.

O

R

–R

s–
2e0

s–
2e0

z

Ez

–

Doc. 24.
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2. Champ électrostatique

Nous admettrons les résultats mis en évidence dans l’Application précédente.

et

ou encore :

Champ gravitat ionnel5
• L’analogie entre la loi de Coulomb :

et celle de Newton :

nous permet de conduire l’étude de la gravitation et de l’électrostatique sur le même
modèle, en remplaçant les charges q1 , q2 par les masses m1 , m2 et la constante

électrostatique K = par – G où G est la constante universelle de gravitation.

• Une masse ponctuelle m0 (masse source) placée en un point O , crée en tout
point M de l’espace, un champ gravitationnel défini par (doc. 25) :

et la force qui s’exerce sur une masse m (masse d’essai) placée en M est :
.

Cette force est toujours attractive, c’est-à-dire dirigée de M vers O .

• Nous postulerons encore la linéarité des effets, ce qui se traduira par le principe
de superposition.
Le champ de gravitation créé en M par un ensemble de masses ponctuelles

mi situées en des points Pi est donné par :

.

Dans le cas d’une distribution volumique (D), ce champ est donné par la relation :

.

• Le champ de gravitation est défini et continu en tout point de l’espace, sauf sur les
masses ponctuelles et sur les distributions surfaciques et linéiques.

• Les lignes de champ gravitationnelles, définies par l’équation différentielle :

ont les mêmes propriétés que celles du champ électrostatique, mis à part le fait
qu’elles partent de l’infini ou des points de champ nul pour aboutir sur les masses.

Doc. 25. Champ gravitationnel créé
en M par la masse m0 en O :

.

M

O (m0)

nEg(M )
ne
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2. Champ électrostatique

C Q F R

● LOI DE COULOMB

La force de Coulomb, force d’interaction électrostatique exercée par la charge q1 sur la charge q2 (les deux

charges étant dans le vide) est : f
→

1 → 2 � .

● CHAMP D’UNE DISTRIBUTION
• Le champ électrostatique E

→

créé en M par un ensemble de charges qi situées en des points Pi est donné par :

E
→

(qi, i = 1 , … , N) (M) = .

• Distribution volumique :

.

• Distribution surfacique :

.

• Distribution linéique :

.

• Le champ est continuellement tangent à des courbes appelées « lignes de champ ». Ces lignes sont orientées par le
sens du champ.

• L’ensemble des lignes de champ s’appuyant sur une courbe fermée (ou contour) C engendre une surface 6 appelée
« tube de champ ».

• Le champ est défini et continu en tout point de l’espace lorsque la densité volumique de charge r (P) est finie.

• Le champ électrostatique en un point de sources n’est pas défini lorsque ces sources sont modélisées par une den-
sité surfacique ou linéique de charge.
À la traversée d’une distribution surfacique, la composante tangentielle du champ est conservée et la composante nor-
male subit une discontinuité : .

● SYMÉTRIES DU CHAMP
• Le champ électrostatique est un objet tridimensionnel ayant les propriétés de symétrie d’un vecteur polaire ou vecteur
« vrai ».

• Symétrie plane

Sur un plan-miroir P d’une distribution de charges $ , le champ électrostatique créé est parallèle au plan P .

Aux points M et M’ symétriques par rapport à un plan-miroir P d’une distribution de charges $ , les champs
électrostatiques Ek et E’k sont symétriques l’un de l’autre.

• Antisymétrie plane

Sur un plan-antimiroir P* d’une distribution de charges $ , le champ électrostatique créé est perpendiculaire
au plan P*.

Au point M’ symétrique de M par rapport au plan-antimiroir P* d’une distribution de charges $, le champ
électrostatique E’k est l’opposé du symétrique du champ Ek créé par la distribution en M .



33

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

Avez-vous retenu l’essentiel ?

✔ Comment s’exprime le champ créé en M par une charge ponctuelle q placée en O.
✔ Qu’est-ce que le principe de superposition pour le champ électrique ?
✔ Exprimer le champ Ek(M ) créé par une distribution de N charges ponctuelles qi placées en Pi .
✔ Que signifie une ligne de champ, un tube de champ ?
✔ Pourquoi deux lignes de champ ne peuvent-elles pas se couper en un point où le champ est défini et non nul ?
✔ Dans quel plan se trouve le vecteur champ Ek(M ) :

• d’une distribution invariante par translation parallèlement à un axe (∆) ;
• d’une distribution de symétrie de révolution.

✔ Que peut-on affirmer, de façon générale, du champ créé par une distribution volumique de charges d’extension
finie ?
✔ Que peut-on dire du champ à la traversée d’une distribution surfacique ?

Du tac au tac (Vrai ou faux)

Contrôle rapide

1. Le champ Ek(M) créé par une distribution
continue de charges d’extension finie, est défini
et continu en tout point de l’espace.

❑ Vrai ❑ Faux

2. Un disque, de centre O et de rayon R , porte
une charge q uniformément répartie. Le champ
créé par ce disque en M est :

avec r = OM et el r vecteur unitaire dirigé de O
vers M .

❑ Vrai ❑ Faux

3. Le vecteur champ électrostatique est un vecteur
polaire.

❑ Vrai ❑ Faux

4. Sur un plan anti-miroir d’une distribution de
charges, le champ est nul.

❑ Vrai ❑ Faux

5. À la traversée d’une distribution linéique uni-
forme de densité l , le champ subit une dis-
continuité d’amplitude .

❑ Vrai ❑ Faux

6. Les lignes de champ partent des charges
positives et aboutissent soit sur une charge
négative soit à l’infini.

❑ Vrai ❑ Faux

7. Par un point de l’espace ne peut passer qu’une
seule ligne de champ.

❑ Vrai ❑ Faux

8. Sur l’axe de révolution d’une distribution de
charges, le champ est nul.

❑ Vrai ❑ Faux

� Solution, page 36.
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Champ créé par un segment chargé

1) Calculer en un point M de
coordonnées cylindriques
(r , � , z) le champ créé par
un segment de l’axe (Oz),
de charge linéique uniforme
� , compris entre les points
P1 et P2 d’abscisses z1 et z2,
repérés par les angles b 1
et b2 .

2) Examiner le cas du fil rec-
tiligne infini uniformément
chargé.

Champ créé par une sphère
chargée en son centre

Supposons que l’on puisse charger une sphère de centre O avec
la charge surfacique � � �0 cos6 � (coordonnées sphériques
d’axe (Oz) avec origine en O). Quelle est la valeur de son champ
au point O ?

Champ d’une distribution
à symétrie cylindrique

Indiquer la forme du champ créé par une distribution possédant
la symétrie cylindrique d’axe (Oz).

Champ d’une distribution
à symétrie sphérique

Même question pour une distribution possédant la symétrie
sphérique de centre O.

Symétries et invariances
Soit un plan repéré par les axes (Ox) et (Oy). Une charge q
placée en P crée un champ électrostatique E

→

au point M .
Nous faisons subir la même transformation aux points P
et M .

Étudier le champ E
→

au cours de cette transformation, dans
les cas suivants :

Champ créé par une sphère
uniformément chargée en surface

Soit une sphère de centre O et de rayon a portant des charges
réparties uniformément en surface (densité surfacique de
charges �).

1) Déterminer le champ au centre O de la sphère en utilisant
des considérations de symétrie.

2) Étudier le champ E
→

(orientation et paramètres dont il
dépend) en tous points de l’espace.

Champ d’un ruban chargé
Le ruban surfacique infini représenté sur le schéma porte une
charge surfacique � 0 uniforme. Calculer le champ électro-
statique créé par le ruban au point M (0, 0, z) .

z
P1

P2

Pdz

er

dEr

dEz

dE

ez

H

O

M
r

d

�

�
2�

1�

M1

M2

M3

M4

E

O x

y

z

M

P
�

P1

P2

P3

P4

cas 1

cas 2

cas 3

cas 4

P, M
translation

P1 , M1

P, M
rotation d’angle a

P2 , M2

P, M
symétrie par rapport à (yOz)

P3 , M3

P, M
symétrie par rapport au point O

P4 , M4

→

→

→

→

x

y

z

O

M
2a
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2. Champ électrostatique

Champ au centre d’une sphère
partiellement chargée

Calculer le champ créé en
son centre O par une
sphère de rayon R portant
la charge surfacique �
répartie uniformément sur
sa surface entre deux plans
de cote z 1 et z 2

(�R 	z 1 	 z 	z2	 R ).

Examiner le cas de la
demi-sphère chargée.

Champ d’un cerceau chargé � 
 ou � 

par moitié sur son axe

Un cerceau de rayon R, de centre O, d’axe (Oz) porte
la charge surfacique � . signe (y) , � étant une constante.
Déterminer la direction du champ créé par le cerceau en
un point M de l’axe (Oz) . Calculer le champ au point M .

Équation d’une ligne de champ
pour un ensemble de charges

N charges q1 , … , qN sont réparties sur l’axe (Oz). Montrer
que l’équation d’une ligne de champ est de la forme :

	
N

i � 1
qi cos �i � cte ,

où les angles �i sont définis sur le schéma suivant :

Champ créé par N charges ponctuelles
réparties sur un arc de cercle

On considère une distribution de N charges ponctuelles q ,
équidistantes sur un arc de cercle A1AN de rayon R et de
centre O. On note a l’angle sous lequel la distribution est
vue du point O .

1) Déterminer le champ en O .

2) Que vaut le champ en O quand les N charges sont régu-
lièrement réparties sur tout le cercle ?

Équivalence entre deux distributions
de charges

Montrer que le segment A1A2 portant la densité linéique de
charges l , crée en M le même champ que l’arc de cercle
B1B2 de centre M , de rayon r = MH et portant la même
densité linéique de charges l .

a

r s
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z1

R

z

y

y

E�

�

–
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�
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q i
neq i
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M
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x
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H
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1) Le champ créé en M par un élément de longueur d z du fil de position

repérée par a , s’écrit :

.

Le champ en M est donc contenu dans le plan (OM, Oz) , et nous avons :

,

avec dz � d (r tan a) � et d � . Il vient alors :

[(sinb2 – sinb1) + (cos b2 – cos b1) ].

2) Le cas du fil infini s’obtient en prenant la limite b1 tend vers � et b2 tend

vers , soit EE
→

� .

La distribution de charges est de révolution autour de l’axe (Oz) . Au point

O appartenant aux deux plans de symétrie (xOz) et (yOz), le champ électrostatique

doit être parallèle à ces deux plans, donc à l’axe (Oz) .

Le plan (xOy) est aussi un plan de symétrie de la distribution de charges (changer
z en – z revient à changer � en π – � ). Au point O, appartenant à ce plan de
symétrie, le champ électrostatique doit être parallèle à ce plan.

Nous obtenons ainsi sans calcul E
→

(O) � 0
→

.

Deux plans de symétrie contiennent un point M : le plan � 1 contenant M

et l’axe (Oz) qui est un axe de révolution de la distribution, et le plan � 2 contenant

M et perpendiculaire à l’axe (Oz) .

En M, le champ E
→

est parallèle à ces deux plans, donc radial. Soit en coordonnées
cylindriques :

E
→

(r , � , z) � E (r , � , z) e
→

r .

La distribution étant invariante par translation parallèlement à (Oz), et par rotation
autour de (Oz), nous obtenons deux simplifications supplémentaires :

E
→

(r , � , z) � E
→

(r , � ) � E (r) e
→

r .

Considérons deux plans perpendiculaires contenant le centre de symétrie O

et le point M, qui sont des plans de symétrie de la distribution de charges. Ces plans

contiennent le champ au point M. Nous en déduisons en coordonnées sphériques :

E
→

(r , � , j) � E (r , � , j) e
→

r .

La distribution étant invariante par toute rotation d’axe contenant le point O, nous
obtenons :

E
→

(r , � , j) � E (r) e
→

r .
La norme du champ dépend de r , sa direction de � et  .

Ek1 � Ek ;

Ek2 est obtenu par rotation d’un angle a de Ek autour de (Oz) ;

Ek3 est symétrique de Ek par rapport à (yOz) ;

Ek4 � � Ek .
Nous remarquons que le champ Ek subit la même transformation que la distribution
de charges.

Corrigés
Solution du tac au tac, p. 33.
1. Vrai ;
2. Faux ;
3. Vrai ;
4. Faux ;

5. Faux ;
6. Vrai ;
7. Vrai si Ek non nul
8. Faux.

z

1

2

O

M

E��

�

M

O E

�
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2. Champ électrostatique

1) Tout plan contenant le centre O de la sphère est un plan de symétrie de

charges. E
→

est donc porté par l’intersection de ces plans qui se réduit ici à un point,
d’où E

→

est nul en O.

2) Étudions le champ E
→

en un point M de l’espace . Les symétries des charges vis-
à-vis d’un plan contenant le point M sont les suivantes : tous les plans contenant
les points O et M sont des plans de symétrie de charges. E

→

à leur intersection est
porté par OM

→

, donc E
→

� E e
→

r .
La symétrie sphérique des charges impose que ce champ dépend seulement de :

OM � r , soit E
→

� E (r) e
→

r .

(Nous verrons que le champ E
→

est de plus nul en tous points intérieurs à la sphère.)

• Recherche de l’orientation du champ

Le plan (xOz) est un plan de symétrie de charges, donc le champ électrostatique est
dans ce plan. Le plan (xOy) est aussi un plan de symétrie de charges, donc le champ
électrostatique est aussi dans ce plan. Le champ E

→

est donc porté par l’intersection
de ces deux plans E

→

� E z e→z .
La distribution de charges est invariante par translation suivant l’axe (Ox) : ce champ
ne dépend pas de x . Nous avons donc E

→

� E z (z) e→z .

• Calcul du champ
Nous avons vu dans l’exercice 1 que le champ d’un fil rectiligne infini portant la charge

linéique � est E
→

� . Utilisons ce résultat en décomposant le ruban en une

succession de fils infinis de largeur dy et portant une charge linéique élémentaire

d� � � 0 d y , comme indiqué sur le schéma. La projection de ce champ élé-
mentaire sur (Oz) est donnée par :

d E z � .

Sachant que r � et y � z tan a �soit dy � z � , le champ cherché

vaut :

Ez � ,

�a représentant l’angle total sous lequel nous voyons la largeur du ruban du point M .

Soit E
→

� arc tan e→z .

• Vérification
La composante du champ suivant (Oy) est donnée par :

Ey � �

� .

• Utilisation des symétries

Le point O appartient aux plans de symétrie (xOz) et (yOz) de la distribution de charges : le
champ est porté par l’axe (Oz), soit E

→

(O) � E e
→

z .

• Calcul du champ
Le champ cherché est la superposition des champs élémentaires créés par des
spires de même axe (Oz). Ces spires sont des portions de surface, sur la sphère,
délimitées par deux cônes de demi-angle au sommet a et a � da. La densité linéique
dl de charges sur ces spires est :

dl . 2πR sina = s . 2πR sin a . R da soit dl = s Rda
Sachant que le champ élémentaire d’une telle spire de rayon r � R sin a est donné
(cf. Application 7) par :

d E z � � ,

nous obtenons :

d E z � � cos a sin a da � � d (sin 2a) ,

soit : E
→

� � e
→

z .

Pour la sphère complète (� z 1 � z 2 � R) , nous trouvons naturellement un champ
nul au centre, et pour la demi-sphère (z 1 � 0 et z 2 � R) , nous obtenons :

E
→

(O) � � e
→

z .

• Utilisation des symétries

M appartient au plan d’antisymétrie (xOz) de la distribution de charges. Le champ en
M, perpendiculaire à ce plan, est parallèle à (Oy) : E (z)

→

� Ey (z) e
→

y .

M1

M2

M3

M4

E

O x

y

M

E1

E2

E3

E4

�

P1

P2

P3

P4

P

z

Ed

x

y

z

O

M
��

�
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• Calcul du champ
Notons z (z � 0) l’abscisse du point M et repérons le point P décrivant le cerceau
comme indiqué sur le schéma de l’énoncé.
La contribution des deux demi-cerceaux suivant (Oy) est identique ; le champ total
est donc égal à deux fois la contribution suivant (Oy) du demi-cerceau supérieur.

La contribution au champ dE
→

y � dEy .e→y dû à un élément de longueur d	 = Rdq , situé
en P (R cos �, R sin �, 0), portant la charge � d 	 , est égale à :

d E y (M) � , avec PM 2 � R 2 � z 2 et e
→

P → M.e→y � � .

Nous obtenons donc, pour l’ensemble des deux demi-cerceaux :

Ey (M) � � sin � d� � � .

Par raison de symétrie, les lignes de champ sont des courbes planes situées

dans des plans (xOy) passant par la droite support des charges. L’équation différen-

tielle d’une ligne de champ est : soit encore

où est le champ créé en M par la charge qi . Exprimons les produits vec-

toriels en utilisant, pour chacun d’eux, les coordonnées polaires de

pôle Ai : .

Il apparaît ainsi que l’équation différentielle d’une ligne de champ se simplifie en :

.

Multiplions cette équation différentielle par y (facteur intégrant) et remarquons que

= sinqi ; il vient : sinqidqi = 0.

Une intégration évidente donne le résultat cherché :

cosqi = cte.

1) Soit Ox la bissectrice de l’angle (A1OAN) : par raison de symétrie, le

champ E
→

en O est porté par l’axe (Ox) et il est dirigé du côté des x croissants si
q > 0 et dans le sens opposé si q < 0 .
La charge q , placée en Ak , crée en O le champ : et le champ

créé par les N charges est : .

Comme nous connaissons déjà la direction et le sens de E
→

, il nous suffit d’en connaître

la norme. Pour calculer la norme de , construisons la somme vectorielle de

ces N vecteurs unitaires.

Notons b l’angle sous lequel est vu de O l’arc de cercle délimité par deux charges
consécutives : (N – 1)b = a .
Les extrémités B0 , B1 , … , BN de ces N vecteurs unitaires se trouvent sur un
cercle de centre W et de rayon r tel que : r = .

La norme est celle du vecteur soit :

.

En définitive, le champ en O s’écrit : .

2) Si les N charges sont régulièrement réparties sur le cercle, alors Nb = 2π et le
champ en O est nul, comme on pouvait s’y attendre.

L’élément de longueur dz situé en P sur le segment A1A2 crée le champ :

. Comme r = et z = r tana , il vient :

dz = et .

En remarquant que da est l’angle sous lequel dz est vu du point M , on en déduit
que les charges ldz et lrda créent en M le même champ élémentaire d E

→

. En
conséquence, le segment A1A2 et l’arc de cercle B1B2 créent en M le même champ
E
→

(M). On peut ajouter, en considérant l’arc de cercle, que le champ E
→

(M) est, par
raison de symétrie, porté par la bissectrice de l’angle (A1OA2).

Eyd

Ezd

Ed

z
O

M

d	�P

r

b

A1

AN

Ak

Ak–1
O

nE
ndEk

nek

x
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b

r
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b
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Potentiel
électrostatique 3

Le champ électrostatique
peut être caractérisé simplement

à l’aide d’une fonction
que nous appellerons

potentiel électrostatique.

Le choix de ce nom sera justifié
par l’interprétation de cette fonction

en terme d’énergie potentielle
d’une charge soumise

aux effets d’un champ électrostatique

O B J E C T I F S

■ Circulation du champ électrostatique.
■ Potentiel électrostatique.
■ Énergie potentielle d’interaction électro-
statique.

P R É R E Q U I S

■ Champ électrostatique.
■ Gradient.
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3. Potentiel électrostatique

Circulation du champ électrostatique1
1.1. Définition

Considérons une courbe � liant deux points A et B. La circulation C d’un champ

de vecteurs E
→

, sur cette courbe, de A à B, est définie par CAB (� ) � ,

où d,
→

désigne le déplacement élémentaire le long de la courbe � (doc. 1).

1.2. Circulation du champ d’une charge ponctuelle

1.2.1. Conservation de la circulation du champ

Le champ E
→

créé par une charge ponctuelle q placée au point O, que nous prendrons

comme origine, est en coordonnées sphériques .

La circulation élémentaire E
→

.dr
→

associée à un déplacement élémentaire dr
→

est :

.

La circulation de A à B sur la courbe � (ne passant pas par O) s’écrit donc :

.

Elle ne dépend pas du choix du chemin G (ne passant pas par O) suivi pour aller
de A à B.

La circulation du champ, d’un point A à un point B, se conserve lorsque nous passons
d’un chemin � à un chemin �’ reliant ces deux points : la circulation du champ créée
par une charge est conservative : CAB (� ) � CAB (�’) .

1.2.2. Champ de gradient

La circulation élémentaire du champ est E
→

.dr
→

� �dV (r
→

) , avec :

Nous pouvons identifier le champ créé par la charge ponctuelle à un champ de
gradient E

→

� �grad
→

V (r
→

) .

1.3. Circulation du champ d’une distribution

1.3.1. Circulation conservative du champ

Le principe de superposition nous permet d’obtenir le champ créé par une distri-
bution en effectuant l’addition des champs créés par chacune des parties élémen-
taires de la distribution.

En conséquence, la circulation a la même valeur pour tous les che-

mins reliant A à B, ce qui signifie que :

La circulation du champ électrostatique est conservative.

Doc. 1. Courbe G liant deux points
A et B.

( )

A

B
dl

�



Ou, ce qui est équivalent :

La circulation du champ électrostatique sur un contour (courbe fermée) est
nulle :

.

Le résultat est indépendant du contour.

Signalons une conséquence de cette propriété qu’il faut avoir à l’esprit lors du
tracé de lignes de champ : une ligne de champ électrostatique ne peut pas avoir
la forme d’une boucle fermée sur elle-même. En effet, la circulation du champ sur
cette boucle, orientée par le champ, ne pourrait être que strictement positive (à
moins que le champ ne soit nul sur toute la boucle ou non défini en certains points,
ce qui interdit alors de la définir comme une ligne de champ), ce qui est en contra-
diction avec la propriété précédente.

Potentiel électrostatique2
2.1. Circulation du champ et potentiel

2.1.1. Fonction potentiel

La circulation du champ électrostatique étant conservative, nous pouvons définir,
indépendamment du chemin suivi pour calculer la circulation du champ de A à B,

la grandeur CAB � . Nous pouvons de même définir la fonction V(r
→

)

par VB � VA � , la valeur de cette fonction au point A pouvant être

fixée arbitrairement (constante d’intégration).

Nous conviendrons d’appeler la grandeur V fonction potentiel électrostatique, défi-
nie à une constante près.

La différence de potentiel entre deux points A et B est :

VA – VB = .

Ainsi, l’expression du potentiel V (M ) (s’annulant à l’infini) créée par une charge
ponctuelle q en O est :

Le calcul du gradient se trouve dans l’Annexe.

Nous pouvons ainsi remarquer :

� Pour s’entraîner : ex. 4.

Un champ de vecteur E
→

à circulation conservative est un champ de gradient.

Le champ électrostatique est un champ de gradient s’écrivant :

E
→

(M) = – grad
æÆ

M V (M) .
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3. Potentiel électrostatique

Doc. 2. Contour (G ).

nE (M )

M

Doc. 3. Il n’existe pas de ligne de champ
fermée.

(G )



� Pour s’entraîner : ex. 1.

2.1.2. Champ de gradient

La circulation élémentaire du champ s’identifie ainsi au signe près à la différen-
tielle (exacte) de la fonction V(M) :

E
æÆ

.d ,
Æ

�Ex dx �Ey dy � Ez dz � �� dV .

Remarque : Le choix du signe moins est pour l’instant arbitraire ; nous verrons
cependant qu’il est bien adapté à une association directe entre le potentiel élec-
trostatique et la notion d’énergie potentielle.

2.1.3. Invariance de jauge

Le potentiel électrostatique créé n’est pas unique.

V’(r
→

) �V(r
→

) �V0 (V0 étant une constante arbitraire) est un autre potentiel acceptable.

Ce choix d’origine, appelé aussi choix de jauge, ne modifie pas le champ, grandeur
physique mesurable par ses effets (force de Coulomb) :

Le champ électrostatique est invariant de jauge, c’est-à-dire de la référence
de potentiel.

Le potentiel électrostatique est défini à une constante près.
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3. Potentiel électrostatique

Potentiel d’un fil rectiligne infini

Déterminer le potentiel associé à un fil rectiligne infini
portant la charge linéique uniforme � . (Le champ de
cette distribution a été calculé au chapitre 2 exercice 1.)

Nous avons vu que le champ de cette distribution a pour
expression en coordonnées cylindriques d’axe (Oz)

confondu avec le fil E
→

� e
→

r .

L’expression d’un déplacement élémentaire étant :
dr
→

�dr .e
→

r �rd� .e
→

� � dz .e
→

z

en coordonnées cylindriques, nous obtenons :

.

Remarquons que pour ce modèle de distribution infinie,
il ne nous est pas possible de choisir le potentiel nul à
l’infini. Si nous choisissons par exemple VA �0 à dis-
tance rA = R du fil, nous aurons :

.

Application 1

Doc. 4. Potentiel d’une charge ponctuelle :

à l’infini, V � 0 .
Doc. 5. Potentiel d’un fil infini .

Nous visualisons l’équipotentielle 0 à distance finie
R du fil. À l’infini, V est infini.



43

3. Potentiel électrostatique

Équation différentielles locales vérifiées par
les composantes d’un champ électrostatique

Le champ électrostatique :

est un champ de gradient, c’est-à-dire qu’il dérive d’un
potentiel V(M) = V(x , y, z).

1) a) Rappeler les relations liant les composantes du
champ au potentiel.

b) Sachant que, par exemple :

en déduire un ensemble de relations liant les dérivées
partielles des composantes de E

→

par rapport aux coor-
données d’espace.

2) a) Le champ électrostatique est-il un champ à circu-
lation conservative ?

b) En faisant circuler le champ électrostatique sur un
contour élémentaire constitué d’un rectangle de côté dx
et dy dans un plan z constant (parallèle au plan (Ox , Oy),

montrer que : .

En déduire les autres relations trouvées précédemment.

1) a) Les relations demandées sont E
→

(M) = – grad
→

M V(M),
qui conduisent à :

b) Sachant que , on en déduit :

.

Les autres relations sont obtenues par permutation cir-
culaire :

.

2) a) Le champ électrostatique est un vecteur à circula-
tion conservative, c’est-à-dire que la circulation de ce
champ sur tout contour (courbe fermée) est nulle.

b) La circulation du champ électrostatique sur un contour

élémentaire orienté (doc. 6.) constitué d’un rectangle de

côtés dx et dy dans un plan z constant (parallèle au plan

(Ox , Oy), et de centre M(x , y , z) donne :

• Circulation sur AB fi + Ex dx (1)

• Circulation sur BC fi + Ey dy (2)

• Circulation sur CD fi – Ex dx (3)

• Circulation sur DA fi – Ey dy (4)

En regroupant les termes deux à deux, cela donne :

(1) + (3) fi ;

(2) + (4) fi .

La somme de ces deux expressions est nulle, ce qui

conduit à :

.

On en déduit aisément les autres relations par permuta-

tion circulaire :

.

Ces propriétés sont valables pour tous les champs élec-

trostatiques.

M

D C

A B

y

y

xx

Application 2

� Doc. 6. Contour
choisi pour faire cir-
culer le champ.
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3. Potentiel électrostatique

Potentiel créé par une distribution3 de charges

3.1. Superposition des effets
L’opérateur gradient étant un opérateur linéaire, nous pouvons aussi obtenir le poten-
tiel électrostatique d’une distribution, par superposition des potentiels créés par les
charges élémentaires δqP de la distribution :

�V(M) � (référence de potentiel nulle à l’infini).

L’élément de charge reste à préciser pour le type de la distribution � considérée,
et nous utiliserons selon le cas envisagé l’une des expressions suivantes donnant,
à une constante près, le potentiel électrostatique créé par �.

L’expression intégrale du potentiel, s’annulant à l’infini, créé par une
distribution de charges d’extension finie est de la forme :

V(M) � .

Potentiel associé à un champ uniforme

1) Calculer grad
→

(E
→

0 . OM
→

) , où E
→

0 désigne une constante
vectorielle.

2) Exprimer le potentiel associé à un champ électrosta-
tique uniforme E

→

0 .

Nous obtenons donc :

grad
→

(E
→

0 . r→)� E
→

0 .

Le résultat final est indépendant du système de
coordonnées choisi pour effectuer le calcul.

1) En exprimant le produit scalaire à dériver à l’aide
des coordonnées cartésiennes, nous avons (r→� OM

→

) :

�
�

�

x
� (E

→

0 . r→) ��
�

�

x
� (E0x x �E0y y � E0z z) � E0x .

La composante du gradient suivant (Ox) étant égale à
E0x , celle sur (Oy) sera égale à E0y et celle sur (Oz) à
E0z .

2) Il suffit d’utiliser l’expression du potentiel en fonc-
tion de la circulation du champ, ce qui nous

donne VB �VA � – E
→

. d l
→

� VA – E
→

0 (r
→

B – r
→

A) ,

soit : V(r
→

) � – E0r cos � �cte .

Ce résultat est en accord avec le calcul élémentaire pré-
cédent.

Application 3

Doc. 7. Doc. 8. E
→

�E0 u
→

x .

y

z

x

O

r

M E0

y

xz

M

r

�

équipotentielles

lig
ne

s
de

ch
am

p

O



3.2. Expressions du potentiel
■ Ensemble de charges ponctuelles
Pour des charges qi placées en des points Pi :

■ Distribution volumique de charges

■ Distribution surfacique de charges

■ Distribution linéique de charges

Remarques
• Ces expressions ne sont a priori applicables que dans le cas de distributions
d’extension finie afin d’assurer une signification aux intégrales. Elles correspon-
dent dans ce cas au choix de potentiel nul à l’infini.

• L’application de la dernière expression au cas du fil infini étudié dans l’Appli-
cation 1 conduirait à une divergence logarithmique de l’intégrale, alors que
l’intégrale correspondant au champ converge. Nous avons vu comment lever cette
difficulté, et observé l’impossibilité de fixer V �0 à l’infini pour ce modèle.

• Un autre problème de convergence de l’intégrale apparaît, si nous nous intéres-
sons au calcul du potentiel, en un point de la distribution, c’est-à-dire en un point
tel que PM �0 lors du calcul de l’intégrale. Dans le cas d’une distribution volu-
mique, l’intégrale converge s’il n’y a pas de charges à l’infini.

3.3. Potentiel d’un disque uniformément chargé sur son axe
Déterminons le potentiel V (M ) d’un disque, de rayon R uniformément chargé
avec la densité s , en un point M de son axe.
Notons (r , q ) les coordonnées polaires d’un point P du disque et d2S = r drdq
l’élément de surface associé à ce point. La charge élémentaire d2q = s r dr dq (infi-
niment petit d’ordre deux) localisée en P , crée le potentiel élémentaire :

.

Une première intégration sur q fait apparaître la contribution à V (M ) d’une bande
circulaire de rayon r et d’épaisseur dr :

.

Nous devons maintenant intégrer sur r . La dépendance de r à r ne s’exprimant
pas simplement, nous prendrons comme variable d’intégration l’angle a :
r = z tana et r = .

45

3. Potentiel électrostatique

V (M) � .

V(M) � .

V (M) � .

V (M) � .

M

O

R

rq

rrmax
a

P

z

y

Doc. 9. Potentiel d’un disque chargé. ©
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3. Potentiel électrostatique

Doc. 10. Le potentiel est continu à la tra-
versée d’une surface chargée.

z

E

sR
2e0

E

V

V
O

Après simplification, l’expression à intégrer s’écrit :

.

d’où :

.

À la traversée de la surface chargée, le champ subit une discontinuité alors que le
potentiel est continu. Ce dernier résultat est général et nous l’admettrons.

Remarque

Notons que la connaissance de la valeur du potentiel sur l’axe ne permet pas a priori
de déterminer le champ sur celui-ci : V (0, 0, z) est connue, et nous ne pouvons que
calculer :

E z (0 , 0 , z) � .

Toutefois, l’axe (Oz) étant un axe de révolution de la distribution, nous avons sur
celui-ci Ex � Ey � 0 , ce qui achève la détermination du champ sur l’axe, en accord
avec le résultat établi au chapitre 2.

� Pour s’entraîner : ex. 2 et 7.

Topographie du potentiel électrostatique4
4.1. Surfaces équipotentielles d’une distribution
4.1.1. Définition

Une surface équipotentielle, de potentiel V0 , est définie par l’équation V(M ) �V0 .
Deux surfaces équipotentielles correspondant à des potentiels distincts ne peuvent
pas avoir d’intersection.

4.1.2. Surfaces équipotentielles et lignes de champ

Considérons deux points très proches appartenant à une même surface équipo-
tentielle de potentiel V0 (doc. 11). Notons M le premier, le second, noté N, étant
obtenu à partir de celui-ci par un déplacement élémentaire dr→ d’orientation quel-
conque dans le plan tangent en M à la surface équipotentielle.
Par définition du potentiel V (N ) �V (M ) �E

→

(M ) . dr→ , et par définition de
la surface V(N) �V(M) . Le champ électrostatique est donc normal à la surface
équipotentielle (propriété du gradient, cf. l’Annexe).

Remarque : Plus généralement, une surface définie par f(r→) �cte admet le vec-

teur grad
→

f comme vecteur normal.

Considérons maintenant une ligne de champ recontrant deux surfaces équipoten-
tielles, de potentiels V1 et V2 , aux points M1 et M2 (doc. 12). Si le champ oriente
la ligne de M1 vers M2 , nous avons :

V2 �V1 �V(M2) – V(M1) � �E
→

.d�
→

�0 .

Le champ est perpendiculaire aux surfaces équipotentielles et les lignes de
champ sont orientées dans le sens des potentiels décroissants.

Le potentiel est continu quand il est défini.

Doc. 11. Sur la surface iso-V0 :
V(M) = V(N).

M dr

E

N

surface
iso V0

Doc. 12. Em est orienté dans le sens des
potentiels décroissants : V1 > V2 .

M1

M2E

ligne de
champ

surface
iso V2

surface
iso V1

E



� Pour s’entraîner : ex. 6, 8 et 9.
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3. Potentiel électrostatique

Surface de potentiel nul
d’un système de deux charges ponctuelles

1) En choisissant le potentiel nul à l’infini, caractériser
complètement la surface équipotentielle V�0 d’un
système de deux charges ponctuelles Q (� 0) en O et
– q (� 0) au point d’abscisse d sur l’axe (Oz).

2) Sur le document 13, les traces des surfaces équipo-
tentielles ont été dessinées dans un plan contenant l’axe
(Oz).

L’équipotentielle V�0 figure en bleu. Quelle est
la charge la plus élevée en valeur absolue ?

Évaluer le rapport .

3) Donner l’allure des lignes de champ si Q � 0 .

1) Le potentiel créé en un point M de coordonnées

sphériques (r , � ,  ) est V � , avec

.

La surface de potentiel nul correspond à (ce qui

n’a de sens que si Q et q sont de même signe, c’est-à-dire
que les charges sont de signe opposé).
Si q � Q , il s’agit du plan médiateur des deux charges.
Si q#Q , il s’agit d’une sphère. En coordonnées carté-
siennes son équation est :

x2 � y2 �

son centre est au point d’abscisse zC = sur

l’axe (Oz) et son rayon est R� .

2) L’équipotentielle V �0 entoure la charge �q.
L’abscisse zC de son centre est positif donc Q � q . Nous

pouvons lire que le rapport , égal à , vaut .

3) Le document 15 donne l’allure des lignes de champ.

Application 4

A B

équipotentielle
de potentiel V = 0

Doc. 13. L’équipotentielle de potentiel V �0 est un
cercle de diamètre AB, avec A (�6) et B (� 12) .

Doc. 14. Nous visualisons sur ce schéma l’équipoten-
tielle circulaire V � 0 (en noir V � 0 et en bleu
V � 0).

Doc. 15. Allure des lignes de champ.

équipotentielle
de potentiel V = 0
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3. Potentiel électrostatique

Remarques

• L’orthogonalité des lignes de champ aux surfaces équipotentelles est à retenir pour
effectuer des tracés qualitatifs de lignes de champ et de coupes de surfaces équipo-
tentielles sur une figure.
Attention cependant : le champ électrostatique est perpendiculaire aux surfaces équi-
potentielles : mais nous pourrons rencontrer le cas d’une ligne de champ non per-
pendiculaire à une surface équipotentielle, lorsque le point qu’elle atteint sur cette
surface est un point de champ nul.

• Sur une carte de lignes équipotentielles, les régions de champ intense sont caracté-
risées par des lignes équipotentielles rapprochées. En effet, si |V2 – V1 | est faible, il
est possible d’évaluer le champ en M1 par l’expression : |V2 – V1 | ≈E (M1) . M1M2 .
Plus M1M2 est faible, plus E(M1) est intense. Ainsi sur le document 13, le module
du champ est plus intense en A qu’en B : |E

→

(A) | > |E
→

(B) | .

4.2. Considérations de symétrie
4.2.1. Champ scalaire

La circulation élémentaire E
→

.d�
→

fait intervenir le produit des deux vecteurs (polaires),
et possède les propriétés de symétrie d’un champ scalaire.

Nous pourrons choisir la jauge (constante d’intégration) de façon à obtenir un poten-
tiel V(r→) ayant les propriétés de symétrie de la distribution de charges.

Par exemple, dans le cas d’une distribution � admettant un plan d’antisymétrie �*,
nous prendrons V �0 sur ce plan. En un point M et en son symétrique M’ par rap-
port au plan �*, le potentiel prend alors des valeurs opposées.

Dans le cas d’une distribution � admettant un plan de symétrie � , le potentiel a
la même valeur en un point M et en son symétrique M’ par rapport au plan � .

Les propriétés de symétrie du potentiel peuvent aussi s’obtenir à l’aide de celles
du champ créé par la distribution étudiée. Pour les symétries usuelles, les
propriétés du potentiel s’obtiennent intuitivement comme l’illustrent les exemples
qui suivent.

4.2.2. Invariances

Étudions l’expression générale du potentiel pour diverses invariances.

• Pour une distribution invariante par toute translation parallèlement à l’axe (Oz),
le potentiel ne peut dépendre que des variables de position x et y. Ceci peut être
confirmé par le résultat obtenu au chapitre 2, donnant la forme du champ :

E
→

(x, y, z) �E
→

(x, y) �Ex(x, y)e→x�Ey(x, y)e→y .

• Pour une distribution possédant la symétrie de révolution par rapport à l’axe (Oz),
il apparaît immédiatement que la fonction potentiel ne dépend que des variables r
et z des coordonnées cylindriques d’axe (Oz), en accord avec le champ déjà obtenu :

E
→

(r, �, z) �Er(r , z)e→r �Ez(r , z)e→z .

• Pour une distribution possédant la symétrie cylindrique d’axe (Oz), la fonction
potentiel ne peut dépendre que de la distance r à l’axe (Oz) :

V (r→) �V (r, �, z) �V (r) ,

en accord avec la forme du champ :

E
→

(r, �, z) �E(r) e→r .



• Pour une distribution possédant la symétrie sphérique de centre O, la fonction
potentiel ne dépend que de la distance r au point O :

V(r→) �V(r, �,  ) �V(r) .

Le champ est d’ailleurs de la forme : E
→

(r, �,  ) �E(r) e→r .

Énergie potentielle d’interaction5 électrostatique

5.1. Énergie potentielle d’une charge placée
dans un champ

5.1.1. Travail de la force électrostatique

Le travail élémentaire de la force f
→

�qE
→

lors d’un déplacement dM
→

de celle-ci est :

�W � f
→

.dM
→

� qE
→

.dM
→

� � q grad
→

V.dM
→

� � qdV � � d(qV ) .
Le travail de cette force correspondant à un déplacement de la charge q d’un point
A à un point B est ainsi WAB ��q (VB � VA) .

5.1.2. Énergie potentielle

Ce travail ne dépend pas du chemin suivi et s’identifie à la variation d’une fonction
d’état qui ne dépend que de la position de la particule.

La force de Coulomb f
→

�qE
→

exercée par le champ électrostatique dérive de cette
énergie potentielle, définie (comme le potentiel électrostatique) à une constante près :

f
→

�qE
→

� �grad
→

�P .

Ainsi, ce champ de force est un champ de gradient et, à ce titre, la force électro-
statique est une force conservative : son travail entre deux points A et B ne dépend
pas du chemin suivi.

En effet, le travail élémentaire est égal à l’opposé de la variation de l’énergie poten-
tielle :

f
→

.dM
→

� qE
→

.dM
→

� � d�P .

Le travail de la force électrostatique entre A et B est :
WAB �� �P(B) � �P(A) � ���P .

� Pour s’entraîner : ex. 3.

L’énergie potentielle d’interaction entre une charge q et un champ électro-
statique E

→

créant le potentiel V est � qV .
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Travail de l’opérateur déplaçant la charge

Quel est le travail fourni par un opérateur qui déplace très
lentement une charge q dans un champ électrostatique E

→

donné ?

L’opérateur déplace la charge sans lui fournir d’éner-
gie cinétique : si la vitesse de déplacement est très lente,

la force f
→

op qu’il applique à la charge sert à compen-
ser la force exercée par le champ E

→

sur celle-ci , d’où
f
→

op ��qE
→

.

Lorsque l’opérateur déplace la charge de dM
→

, il four-
nit à la charge le travail élémentaire :

�Wop � f
→

op .dM
→

� d(qV) ��d�P .
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5.2. Énergie d’interaction de deux charges ponctuelles

5.2.1. Travail de constitution du système de deux charges

L’opérateur cherche à présent à amener deux charges q1 et q2 aux positions finales
M 1 et M 2 depuis une situation d’interaction nulle où les charges sont infiniment
éloignées, sans leur fournir d’énergie cinétique.

5.2.1.1. Cas particulier

Imaginons tout d’abord une transformation particulière très simple à étudier. Dans
un premier temps, l’opérateur amène la charge q1 seule depuis l’infini jusqu’au point
M 1 sans avoir d’énergie à fournir.
Par la suite q1 est fixe, donc q1 ne reçoit pas de travail.

Amenant q2 au point M2 , en la déplaçant dans le champ électrostatique créé par q1,
l’opérateur fournit le travail Wop �q2V1(M2), où V1(M2) désigne le potentiel (pris
nul à l’infini) créé par q1 au point M2 :

V1(M 2) � .

Le travail de constitution du système est donc :

Wop � .

5.2.1.2. Cas général

La force exercée par q1 sur q2 est f
→

1→2 � , opposée à la force exer-

cée par q2 sur q1 . L’opérateur doit compenser ces deux forces.

Lorsqu’il déplace q1 de dM
→

1 et q2 de dM
→

2 , il fournit le travail élémentaire :

�Wop � f
→

op→ q1
.dM

→

1 �f
→

op→ q2
.dM

→

2

� � f
→

1→2 .dM1M2
→

� .

Le travail total fourni par l’opérateur s’identifie ainsi au résultat obtenu dans le cas
particulier simple étudié précédemment.

5.2.2. Énergie potentielle d’interaction

En notant V1 (M 2 ) le potentiel créé par la charge q 1 au point M 2 et V2 (M 1 )
le potentiel créé par la charge q 2 au point M 1 , nous pouvons aussi écrire cette
énergie sous les formes suivantes :

�P12 � q1V2 (M 1) � q2V1 (M 2)

� [q1V2 (M 1) � q2V1 (M 2)] .
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3. Potentiel électrostatique

L’énergie potentielle d’interaction électrostatique entre les charges q1 et
q2 est :

�P12 � .
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3. Potentiel électrostatique

Conducteurs en équilibre électrostatiques6 et condensateurs

6.1. Conducteurs en équilibre électrostatique
Un conducteur est un corps qui contient des charges libres, c’est-à-dire des particules
chargées capables de se déplacer sous l’action de forces appliquées. En électrostatique,
la seule force considérée est la force électrostatique : Fk = qEk.

Un conducteur est en équilibre électrostatique quand ses charges libres n’ont aucun
mouvement d’ensemble dans un référentiel lié au conducteur :

Il est possible de démontrer (et nous admettrons le résultat) que :

En un point P situé à l’intérieur d’un conducteur, la densité volumique de
charge r(P) est nulle dans un conducteur en équilibre électrostatique.

La charge d’un conducteur en équilibre électrostatique est donc superficielle
et elle est caractérisée par la densité surfacique de charges s (Q).

Le champ électrostatique E(P) est alors nul dans tout le volume du conduc-
teur.

Interaction responsable de la cohésion d’un atome

1) Les solides et les liquides ont tous une masse volu-
mique � de l’ordre de grandeur du kg . dm�3 (à peu
près 1 pour l’eau liquide et la glace, pour le mercure
13,6, …). Quel est l’ordre de grandeur d de
la taille d’un atome ou d’une molécule ?

2) L’énergie d’ionisation de l’atome d’hydrogène (dans
son état fondamental) est égale à 13,6 eV.
Pour rendre compte, au moins en première approxima-
tion, de la structure de l’atome, faudra-t-il invoquer les
forces de gravitation (la constante de gravitation vaut
G �6,67 .10 –11 SI, et la masse de l’électron est
me = 0,9 . 10–30 kg), l’interaction électromagnétique, ou
bien les interactions forte ou faible (de portée très réduite,
de l’ordre de 10–15 m) ?

1) Les liquides et les solides sont extraordinairement
peu compressibles, les atomes étant « au contact » à l’in-
térieur de ces milieux. La masse molaire M des corps
cités en exemple est de l’ordre de quelques dizaines de
grammes (18 g . mol�1 pour l’eau).
Assimilant l’espace occupé par un atome ou une molé-
cule simple à un volume de l’ordre de d3, nous évaluons
d en écrivant :

� volume occupé par une mole �NAd3, soit :

.

(Nous savons, en effet, que la taille d’un atome ou d’une
molécule élémentaire est de l’ordre de 10–10 m .)

2) Imaginons un électron se déplaçant au voisinage d’un
proton, à une distance de l’ordre de 10–10 m telle que
les interactions forte et faible soient négligeables ; il
nous reste à comparer les ordres de grandeur des éner-
gies d’interaction gravitationnelle et électromagnétique
avec l’ordre de grandeur caractéristique donné par l’éner-
gie d’ionisation de l’atome.
Calculons donc :

�P(électromagnétique) �

� 2 .10 –18 J �10 eV .

�P(gravitationnelle) �

� 10– 57 J � 6 . 10–39 eV.
Il faudra donc bâtir un modèle d’atome où les charges
positives du noyau et le nuage électronique environnant
sont liés par l’interaction électromagnétique.

Application 6



Notons s (Q) et nk(Q) respectivement la densité surfacique et le vecteur unitaire de la
normale sortante en Q pris à la surface du conducteur en équilibre électrostatique.
Considérons, en outre, les points M et P au voisinage immédiat de Q , situés sur le
support de nk(Q), le premier à l’extérieur et le second à l’intérieur du conducteur (doc. 16).

À la traversée de la surface en M , le champ subit une discontinuité (cf. chapitre 2,
§ 4.4) :

Ek(M) – Ek(P) = nk(Q) .

Comme Ek(P) = 0, il en résulte que :

Ek(M) = nk(Q), M étant à l’extérieur, au voisinage immédiat de Q .

Par ailleurs, de la relation Ek = – gradp(V) nous en déduisons que le potentiel V(M)
est constant dans un conducteur en équilibre électrostatique. La continuité du potentiel
à la traversée des surfaces chargées, nous permet d’affirmer que :

Les lignes de champ sont donc normales à la surface des conducteurs en équilibre élec-
trostatique.

Sur le document 17, un conducteur porté au potentiel V est placé en présence d’une
charge ponctuelle Q > 0. À l’équilibre électrostatique, on observe sur le conducteur une
ligne neutre (s = 0) (en pointillés) séparant une région où s < 0 (en bleu) d’une autre
où s > 0. Concernant le conducteur, on voit que les lignes de champ partent des régions
chargées positivement et qu’elles aboutissent sur des régions chargées négativement.

6.2. Condensateur plan

Considérons un ensemble de deux plaques métalliques parallèles (A1) et A2 , reliées
à une source de tension constante U = V1 – V2 . Notons e la distance entre les deux
plaques et S l’aire des surfaces en regard (doc. 18).

Quant e est faible devant les dimensions latérales des plaques, cet ensemble des deux
plaques est appelé condensateur et les plaques métalliques baptisées armatures.

Dans ces conditions, nous constatons que le champ est beaucoup plus intense dans la
région interarmatures. Pour la suite, nous négligerons les effets de bord, c’est-à-dire les
effets liés à la présence d’un champ faible à l’extérieur du condensateur. Cette approxi-
mation est excellente dans les conditions où nous la faisons.

Cela étant, nous observons que les lignes de champ sont parallèles, ce qui est la carac-
téristique d’un champ uniforme : Ek = Ez ekz (Ez = cte).

En outre, les lignes de champ partent de l’une des armatures pour aboutir sur l’autre,
cela signifie que les densités surfaciques des deux faces en regard sont de signes oppo-
sés. Comme le champ est uniforme, cela signifie plus précisément que ces densités sur-
faciques sont uniformes et opposées.

Les armatures d’un condensateur portent, sur leurs faces en regard, des
charges opposées.

La surface d’un conducteur est une surface équipotentielle.
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3. Potentiel électrostatique

En un point M situé au voisinage immédiat d’un point Q de la surface exté-
rieure d’un conducteur, où la densité surfacique est s (Q) , le champ vaut :

Ekk(M) = nkk(Q) .

Q

s > 0

s < 0

nE = 0
r = 0 V = cte

Doc. 17. Influence d’une charge
Q (> 0) sur un conducteur.

z

U
ee

OO

(A2)

M1M1

M2M2

(A1)

Doc. 18. Condensateur plan.

P

Q

M

nE(M )
nn (Q)

Doc. 16. Ek(M) = nk(Q).

M est au voisinage immédiat de Q.



Dans le cas du document 18, notons q la charge positive de l’armature (A1), il vient :

q = sS = e0EzS .

La circulation du champ électrostatique entre les deux plaques, calculée le long d’une
ligne de champ, s’écrit :

U = V1 – V2 = Ek .dk	 = Ez dz = Eze .

En éliminant Ez entre les deux relations précédentes, il vient :

q = U .

Le facteur de proportionnalité C = est appelé capacité du condensateur

plan. Il s’évalue en farad (F).

Remarque
Lorsqu’on utilise la relation q = CU , il convient de rappeler sur le symbole du
condensateur (doc. 19) la définition de U (flèche de tension) et l’armature portant
la charge q (armature associée à l’extrémité de la flèche des tensions).

Les charges ± q des armatures d’un condensateur sont proportionnelles à
la tension U appliquée entre les armatures.
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3. Potentiel électrostatique

U

q
C

Doc. 19. Symbole d’un condensateur.
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3. Potentiel électrostatique

C Q F R

● CIRCULATION DU CHAMP ÉLECTROSTATIQUE
• La circulation du champ électrostatique est conservative : la circulation du champ électrostatique sur un contour
(courbe fermée) est nulle :

.

● POTENTIEL ÉLECTROSTATIQUE
La différence de potentiel entre deux points A et B est : VA – VB = .
Le potentiel électrostatique est défini à une constante près.
Le champ électrostatique est invariant de jauge, c’est-à-dire de la référence du potentiel.

● CHAMP DE GRADIENT
Le champ électrostatique est un champ de gradient s’écrivant : E

→

(M) = – grad
→

M V (M) .
Un champ de vecteur E

→

à circulation conservative est un champ de gradient.
Le champ est perpendiculaire aux surfaces équipotentielles et les lignes de champ sont orientées dans le sens
des potentiels décroissants.

● POTENTIEL D’UNE DISTRIBUTION D’EXTENSION FINIE
L’expression intégrale du potentiel, s’annulant à l’infini, créé par une distribution de charges � d’extension
finie est de la forme :

V(M) = .

Le potentiel est continu quand il est défini.

● ÉNERGIE POTENTIELLE
L’énergie potentielle d’interaction entre une charge q et un champ électrostatique E

→

créant le potentiel V est :

�P = qV.

L’énergie potentielle d’interaction électrostatique entre deux charges q1 et q2 en M1 et M2 est :

�P12 = .

● CONDUCTEURS EN ÉQUILIBRE ÉLECTROSTATIQUES ET CONDENSATEURS
Le champ électrostatique E(P) est alors nul dans tout le volume du conducteur.

En un point P situé à l’intérieur d’un conducteur, la densité volumique de charge r (P ) est nulle pour un
conducteur en équilibre électrostatique.

La charge d’un conducteur en équilibre électrostatique est superficielle et elle est caractérisée par la densité sur-
facique de charges s (Q).

En un point M situé au voisinage immédiat d’un point Q de la surface extérieure d’un conducteur, où la den-
sité surfacique est s (Q), le champ vaut :

Ek(M) = nk(Q) .

La surface d’un conducteur est une surface équipotentielle.

Les armatures d’un condensateur portent, sur leurs faces en regard, des charges opposées ; les charges ± q des
armatures d’un condensateur sont proportionnelles à la tension U appliquée entre les armatures.

La capacité d’un condensateur plan de surface S et d’épaisseur e est égale à : C = , elle s’évalue en farad (F).
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Avez-vous retenu l’essentiel ?

✔ Établir l’expression du potentiel V (M ) (s’annulant à l’infini) créé en M par une charge ponctuelle q placée
en O.

✔ Pourquoi le champ Ek(M ) est-il à circulation conservative ?

✔ Une distribution de charges crée dans l’espace un potentiel V(x) = – E0x . Quelles sont les surfaces équipoten-
tielles de cette distribution et quel est le champ Ek(M ) créé ?

✔ Démontrer que les lignes de champ coupent orthogonalement les surfaces équipotentielles.

✔ Établir l’expression de l’énergie d’interaction �P entre une charge q et un champ électrostatique Ek(M ) créant
un potentiel V (M) .

✔ Établir l’expression de l’énergie potentielle �P de deux charges q1 et q2 placées respectivement en M1 et
M2 .

Du tac au tac (Vrai ou faux)

Contrôle rapide

1. Deux surfaces équipotentielles peuvent se
couper dans une région où le champ est défini
et non nul.

❑ Vrai ❑ Faux

2. À la traversée d’une surface chargée, le poten-
tiel subit une discontinuité.

❑ Vrai ❑ Faux

3. Dans un champ de potentiel V (M) , l’énergie
potentielle �P d’un système de deux charges
q1 et q2 , placées respectivement en M1 et
M2 , est :

�P = q1V (M1) + q2V (M2) .

❑ Vrai ❑ Faux

4. Le potentiel est défini à l’intérieur d’une distri-
bution volumique d’extension finie.

❑ Vrai ❑ Faux

5. Le potentiel est défini sur une distribution
linéique.

❑ Vrai ❑ Faux

6. La forme des surfaces équipotentielles est
déterminée par les symétries des distributions
de charges.

❑ Vrai ❑ Faux

7. En un point M0 où le champ est nul, le potentiel
V (M0) est nul.

❑ Vrai ❑ Faux

8. En un point M0 où le potentiel est nul, une
charge ponctuelle q n’est soumise à aucune
force.

❑ Vrai ❑ Faux

� Solution, page 57.
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Potentiel créé par une circonférence chargée

Déterminer le potentiel créé en un point de son axe par une cir-
conférence, de rayon R , uniformément chargée avec la den-
sité l . On prendra V∞ = 0 .

Potentiel créé au centre d’une sphère

Une sphère de centre O et de
rayon R porte une charge Q
répartie avec la densité
surfacique � �g(�) h(") en
coordonnées sphériques.

Évaluer le potentiel électro-
statique créé par la sphère en
son centre.

Accélération d’électrons
par une différence de potentiel

Les électrons émis par le filament chauffé d’un écran d’oscil-
loscope ont une vitesse négligeable et sont accélérés par une
différence de potentiel V0 .

1) Quelle est la vitesse atteinte par les électrons accélérés ?

2) À quelle condition peut-on considérer le résultat précédent,
obtenu par la mécanique classique, comme satisfaisant ?
Donnée : mec2 �0,511 MeV .

Les valeurs de E et V sont-elles liées ?

Soit quatre charges disposées au sommet d’un carré dont
la longueur de la diagonale est 2a . Calculer E et V au centre
du carré dans les configurations suivantes :

Équilibre d’une charge
dans le champ électrostatique
de deux charges fixes

Soit un plan repéré par les axes (Ox) et (Oy) et deux charges
q fixes, identiques, placées en A (� a, 0) et B (a, 0).
Étudier la position d’équilibre et la stabilité d’une charge Q
pouvant se déplacer dans ce plan. On supposera q > 0 .

Trois charges au sommet
d’un triangle équilatéral

Considérons trois charges identiques (q � 0) au sommet d’un
triangle équilatéral de côté a .

1) Trouver un point évident de champ nul.
Quelle est la valeur du potentiel en ce point ?

2) La simulation suivante, représentant les lignes de champ
et les équipotentielles, montre qu’il existe trois autres points
de champ nul. Mesurer leurs positions et estimer la valeur du
potentiel en ces points.

*
Potentiel d’une sphère
uniformément chargée en surface

Soit une sphère de rayon R , de centre O et de charge surfacique
uniforme � . La référence de potentiel sera prise nulle à l’infini.

1) Calculer le potentiel en O .
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3. Potentiel électrostatique

2) En utilisant le découpage suggéré sur le schéma, calculer
le potentiel en un point M intérieur ou extérieur à cette sphère.

Surfaces équipotentielles d’une ligne bifilaire

Soit deux fils rectilignes infinis, parallèles à l’axe (Oz) et d’équa-
tions cartésiennes respectives x ��a et x ��a , de charges
linéiques uniformes �� et �� (� � 0). On note A1 et A2
leurs intersections respectives avec le plan (xOy) .
Un point M est repéré par ses coordonnées cartésiennes
(x, y, z) et on note r 1 et r 2 les distances entre M et le pre-
mier fil d’une part, M et le second fil d’autre part.
Nous choisirons l’origine des potentiels au point O origine
du repère. Caractériser en coordonnées cartésiennes la sur-
face équipotentielle de cette distribution. Représenter quali-
tativement les lignes de champ et les traces des surfaces équi-
potentielles dans le plan (xOy).

*
Ligne dipolaire

Considérons comme dans l’exercice 8 une ligne bifilaire
constituée de deux fils rectilignes infinis, parallèles à l’axe

(Oz), d’équations cartésiennes x �� a et de charges
linéiques uniformes � � (� � 0) .

La ligne dipolaire est obtenue comme la limite de cette
distribution lorsque a tend vers zéro, en maintenant le produit

(2a)� constant. Nous noterons alors K � , la constante

caractérisant cette ligne.

Un point M est repéré par ses coordonnées cylindriques (r, �, z).
Pour obtenir le comportement limite de la ligne bifilaire, nous
considérerons par la suite que la distance r du point M à l’axe
(Oz) est très grande devant a et nous nous contenterons d’ob-
tenir les expressions du potentiel et du champ de la ligne en
ne retenant que l’ordre le plus bas non trivial de leurs déve-
loppements en puissances du rapport .

1) Exprimer dans ces conditions le potentiel créé par une
ligne dipolaire.

2) En déduire son champ.

3) Quelles sont les équations des surfaces équipotentielles
et des lignes de champ de la ligne dipolaire ? Les représen-
ter qualitativement.

Toutes les charges de la circonfé-

rence se trouvent à la même distance r du point

M , donc V(M) = où q = 2πRl est la

charge de la circonférence.
En explicitant l’expression précédente, il vient :

V(z) = .

La fonction pontentiel V(z) est une fonction paire,
c’est-à-dire que le potentiel est le même en deux-
points symétriques par rapport au plan de la dis-
tribution.

Quelle que soit la répartition exacte des charges à la surface de la sphère,

celles-ci sont toutes à la distance R du point O . Le potentiel créé en O est donc :

V (O) � .

1) En appliquant le théorème de l’énergie cinétique aux élec-

trons de charge �e : ��K �W � � ��P � � eV0 . La vitesse initiale étant négli-

geable, la vitesse atteinte après accélération vaut :

v � .

2) Ce résultat reste valable tant que v reste très petite devant c . Nous devons donc
vérifier que : �K � mv 2��mc2 .

L’énergie eV0 fournie par le champ accélérateur doit rester faible devant l’énergie de
masse de l’électron mec2 , soit :

Corrigés
Solution du tac au tac, p. 55.
1. Faux ;
2. Faux ;
3. Faux ;
4. Vrai ;

5. Faux ;
6. Vrai ;
7. Faux ;
8. Faux.
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V0 �� � 5,11 .105 V .

Les tensions accélératrices des oscilloscopes n’excédant pas quelques milliers de volts,
le traitement classique est largement suffisant pour étudier le mouvement des élec-
trons accélérés.

Pour déterminer le potentiel, nous posons V∞ = 0.

Sur les diverses représentations de potentiel suivantes, nous visualisons les cas où le
champ E

→

est nul (extremum de potentiel, on dit aussi que le potentiel est stationnaire),
et les cas où ce champ est non nul (il est alors dirigé vers les potentiels décroissants).
Ces visualisations représentent aussi l’énergie potentielle d’une charge positive dans
cette configuration de champ : cette particule se dirigera vers les potentiels
décroissants.

La position d’équilibre de la charge Q est en O (0, 0) , quel que soit le signe

de cette charge : c’est le seul point de champ nul.

• Q � 0 : l’énergie potentielle de cette charge (égale à QV(M) , le potentiel V(M)
étant celui créé par les deux charges q en A et B) ne présente pas de minimum dans
ce plan. À la rigueur, si le mouvement de la charge était limité à l’axe (Oy),
la position d’équilibre O serait stable.

1

2

3

4

5

potentiel au
centre

cas étudié
champ électrostatique au centre

composante Ex composante Ey

4 0 0

�4 0 0

0 0 0

0 0

1

1
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3
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3. Potentiel électrostatique

• Q � 0 : l’énergie potentielle de cette charge ne présente pas de minimum dans ce
plan. À la rigueur, si le mouvement de la charge était limité à l’axe (Ox), la position
d’équilibre O serait stable.

Remarque : Le potentiel apparaissant dans les expressions précédentes est celui créé
par les deux charges fixes q en A et B. Les documents permettent de visualiser l’al-
lure de l’énergie potentielle QV(M) dans le plan (xOy) . Une charge ne pouvant exer-
cer de force sur elle-même, c’est bien le potentiel créé par les deux charges q en A et
B qu’il faut considérer, et non pas le potentiel total représenté ci-dessous pour q et
Q � 0 .

1) Au centre O du triangle, le champ

électrostatique est nul, et le potentiel est égal à :

.

2) Les coordonnées de ces points sont
(par lecture sur le schéma ci-contre) sur les
hauteurs à 0,125 a de la base (la valeur
exacte est 0,125 8 a).

Le potentiel a pour valeur en ces points :

.

Le potentiel varie très peu au centre du triangle.
Les représentations suivantes permettent de le vérifier.

Il existe bien un minimum de potentiel.

1) Le potentiel du point O est égal à V (O) � (où Q représente la

charge totale de la sphère), car toutes les charges sont à la distance R du point O.

Soit V (O) � .

2) Le potentiel est donné par la formule :

V (M) � (constant) à l’intérieur de la sphère : le champ électrostatique est

donc nul à l’intérieur de cette sphère ; V (M) � à l’extérieur.

Remarquons la continuité du potentiel à la traversée de la surface chargée. De plus,
en notant Q �4πR 2 � la charge totale de la sphère, le potentiel à l’extérieur de la
sphère est identique à celui créé par une charge ponctuelle Q placée en O :

V � .

Compte tenu du choix d’origine des potentiels, et connaissant le potentiel créé

par un fil rectiligne infini (cf. Application 1), le potentiel électrostatique créé par

la ligne est :

V (M) � .

x

y

q(A) q(B)

Q

a

0,125 a

a
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Les surfaces équipotentielles caractérisées par �cte , sont donc des cylindres

d’axe parallèle à (Oz) si le potentiel est non nul ; l’équipotentielle V �0 correspond
au plan (yOz) .

Notant k � , l’équation cartésienne du cylindre de potentiel V0 est :

.

Son centre est au point d’abscisse de l’axe (Ox), son rayon vaut .

Les cylindres de potentiel V0 et �V0 sont symétriques l’un et l’autre par rapport

au plan (yOz) , passer de l’un à l’autre revient à changer k en . Lorsque k (donc

le potentiel) tend vers�∞ , le cylindre tend vers le fil rectiligne chargé + l ; lorsque
k tend vers 0 , le cylindre tend vers le fil chargé �l .

Les traces des cylindres équipotentiels sont, sur la figure, des cercles entourant l’un
ou l’autre des fil. Les lignes de champ s’en déduisent graphiquement car elles sont
parallèles au plan du document et perpendiculaires aux surfaces équipotentielles, orien-
tées du fil chargé positivement vers le fil chargé négativement.
L’évolution du potentiel dans l’espace est présentée ci-dessous.
Nous visualisons l’équipotentielle V � 0 perpendiculaire à l’axe des deux fils.

1) Nous avons obtenu (exercice 8) le potentiel de la ligne :

,

avec r 1 �[r 2 �2 ar cos � �a 2] et r 2 � [r 2 � 2 ar cos � �a 2] .

Le développement du potentiel en puissance de donne à l’ordre le plus bas non nul :

V � .

2) Le champ électrostatique de la ligne dipolaire s’en déduit :

E
→

�� grad
→

V ( r
→) � K .

3) L’équation d’une équipotentielle est de la forme r �r0 cos � . Il s’agit d’un
cylindre de base circulaire, d’axe parallèle à (Oz) et coupant (Ox), tangent à (Oz) .
Les lignes de champ sont contenues dans des plans parallèles à (xOy). Pour un
déplacement élémentaire d r

→
�d r e

→

r �r d � e
→

� le long d’une ligne de champ :

d r
→

� E
→

= K

est nul, donc l’équation d’une ligne de champ est de la forme r �r0 sin � . Il s’agit
d’un cercle d’axe parallèle à (Oz) et coupant (Oy), tangent à (Oz) . La figure ci-dessus
représente, dans un plan z �cte , quelques lignes de champ et traces de surfaces équi-
potentielles. Dans ce plan, le passage des lignes de champ aux traces des équipoten-
tielles se fait par rotation de la figure de 90° autour de l’axe (Oz).

La figure ci-dessus montre le tracé du potentiel créé par cette ligne dipolaire, très sem-
blable à celui obtenu dans l’exercice 8 .

+V0–V0

y

xz

– � +�

y

xz
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Le théorème
de Gauss 4

Le champ électrostatique (ou gravitationnel)

est lié linéairement à ses sources par une loi en .

Son flux à travers une surface fermée
s’exprime alors très simplement

en fonction de la charge (ou la masse)
contenue à l’intérieur de cette surface.

Ce résultat, que nous allons établir et exploiter,
porte le nom de théorème de Gauss, astronome,

physicien et mathématicien allemand (1777-1855).

Ses travaux, considérables,
allèrent, pour la seule physique,

de la mécanique (céleste) à l’électromagnétisme,
en passant par l’optique géométrique.

O B J E C T I F S

■ Théorème de Gauss.
■ Utilisation.

P R É R E Q U I S

■ Champ électrostatique, champ gravitationnel
■ Potentiel électrostatique.
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4. Le théorème de Gauss

Flux du champ d’une charge1
1.1. Vecteur surface
Considérons une surface élémentaire « plane » dS contenant le point M . Elle
possède deux faces (l’une d’entre elle sera nommé face négative et l’autre face posi-
tive) et une orientation bien définie dans l’espace.

Pour décrire complètement une telle surface, nous devons distinguer ses deux faces
et indiquer son orientation. Pour ce faire, nous associerons à tout élément de sur-
face dS un vecteur unitaire nl (M) dont la direction est normale à la surface dS
et dont le sens est celui qui amène de la face négative à la face positive (doc. 1a).

Une description plus complète, nous conduit à introduire un vecteur surface élé-
mentaire dSk(M) = nl (M)dS, dont la norme est égale à l’aire de chacune des faces
de dS .

Lorsque la surface n’est plus élémentaire, les orientations des éléments de surface
dSk(M) sont définies par continuité à partir de l’orientation de l’un d’entre eux
dSk(M0) (doc. 1b).

1.2. Flux du champ électrostatique
1.2.1. Définition

Soit Ek(M) le champ électrostatique créé en M par une certaine distribution de
charges �. Le flux élémentaire de Ek(M) à travers dSk(M) est le scalaire df défini
par : df = Ek(M) . dSk(M).

Le flux de Ek(M) à travers une surface (S) s’obtient par intégration de df sur (S) :

.

1.2.2. Flux créé par une charge ponctuelle

La charge ponctuelle q placée en O (doc. 2), crée en M le champ Ek =
dont le flux à travers dSk(M) est :

.

Pour interpréter le produit scalaire erm . dSk, considérons la surface d’aire dS , pro-
jeté de dS sur un plan orthogonal à erm . dS représente également l’aire découpée
sur une sphère de centre O et de rayon r = OM par un cône de sommet O et qui
s’appuie sur le contour définissant dS. L’aire dS est une aire algébrique, positive
quand du point O on voit la face négative de dS, négative dans le cas contraire.

Donc nous pouvons écrire : erm . dSk = dS cos a = dS soit : dF = .

Considérons maintenant une sphère de rayon R0 , centrée en O . Le cône de som-
met O qui s’appuie sur le contour de dS découpe sur cette sphère une pastille

d’aire dS0 telle que .

En effet, si nous multiplions par l (coefficient positif quelconque) le rayon d’une
sphère, toutes les dimensions mesurées sur celle-ci sont multipliées par l et les
aires par l2 : l’aire découpée par un cône de centre O sur une sphère de centre
O est proportionnelle au carré de son rayon.

Finalement : .

Dans le cas d’une surface fermée (doc. 1c), les vecteurs unitaires nll (M)
sont toujours dirigés vers l’extérieur (normale sortante).

Doc. 1a. Définition du vecteur sur-
face élémenaire dSk(M).

M

face positive

ndS (M )
nn (M )

face négative

Doc. 1b.

M
M0

ndS (M )
ndS (M0)

Doc. 1c. Pour une surface fermée, la
normale est dirigée vers l’extérieur.

M

M0

ndS (M )

ndS (M0)

Doc. 2. dS est le projeté de l’aire élé-
mentaire dS sur un plan orthogonal
à erm et passant par M .

q
O

r
M

R0

nE(M )

ner

ndS0
ndS0

ndS
ndS

a



1.2.3. Flux à travers une surface fermée contenant la charge

Soit (S) une surface fermée entourant la charge q placée en O et (S ) la sphère
de centre O et de rayon R (doc. 3). Le flux élémentaire du champ créé par la
charge q à travers dSk(M) est :

dF =

où dS est l’élément de surface découpé, sur la sphère (S ) de centre O et de
rayon R , par le cône de sommet O s’appuyant sur le contour de dS .
Par intégration sur (S), il vient :

F = .

1.2.4. Flux à travers une surface fermée ne contenant pas la charge

Soit q une charge placée en O, à l’extérieur de la surface fermée (S). Un cône élé-
mentaire de sommet O découpe sur (S) un nombre pair d’éléments de surface
telles que dS1 , dS2 , etc. La moitié de ces surfaces présentent au point O leurs
faces négatives et l’autre moitié leurs faces positives (doc. 4).
Associons ces éléments de surface deux à deux tels, par exemple, dS1 et dS2 et
notons respectivement df1 et df2 les flux à travers ces surfaces. Ces flux élé-
mentaires sont de signes opposés et, en outre, avec les notations du document 4,
nous pouvons écrire (r1 = OM1 et r2 = OM2) :

dF = et dF 2 =

donc : df1 + df2 = 0. Par intégration sur (S), il vient :

1.3. Flux du champ de gravitation
Les différentes expressions du flux de gravitation s’obtiennent par analogie avec
les expressions correspondantes établies en électrostatique. Il suffit, d’une part, de
remplacer les charges q par les masses m et, d’autre part, de remplacer la constante

électrostatique K = par la constante de gravitation changée de signe – G.

Champ de gravitation créé par une masse m ponctuelle :

Egm = – Gm .

Flux élémentaire créé par une masse m ponctuelle :

dF = Egm . dSN(M) = – Gm .
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4. Le théorème de Gauss

Le flux du champ créé par une charge q , à travers une surface fermée
(S) ne contenant pas cette charge, est nul :

F = .

Le flux (sortant) du champ créé par une charge q , à travers une surface
fermée (S) contenant cette charge, est :

F = = .

Doc. 3. La charge q est à l’intérieur
de la surface (S) fermée.

q
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r

M

R

(S)

nE(M )
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ndS0
ndS

ndS(M )

(S )

Doc. 4. La charge q est à l’extérieur
de la surface (S) fermée.
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Flux à travers une surface fermée contenant la masse m :

F = – Gm = – 4πGm .

Flux à travers une surface fermée ne contenant pas la masse m :

F = – Gm = 0 .

Théorème de Gauss2
Pour une distribution de charges � , les résultats précédents permettent, par utili-
sation du principe de superposition, de calculer le flux sortant du champ créé à travers
une surface fermée S. Pour une charge élémentaire dq de � , la contribution au flux

total est si dq est à l’intérieur de S, et nulle si dq est à l’extérieur de S (doc. 5).

Pour le champ gravitationnel, le théorème de Gauss s’énonce de façon analogue :

Remarque : Le caractère remarquable de ce résultat est dû seulement au fait que la

dépendance du champ à la distance r d’observation est une loi en .

Conséquences du théorème de Gauss3
3.1. Propriétés générales d’un champ électrostatique
Ayant postulé la loi de Coulomb et la linéarité, nous avons montré que le champ
électrostatique était :
• un champ de circulation nulle sur un contour fermé, c’est-à-dire un champ de
gradient ;
• un champ lié à ses sources (les charges) par le théorème de Gauss.

Il est possible de montrer que, réciproquement, ces deux propriétés permettent de
retrouver la loi de Coulomb.

L’application suivante illustre l’étude du comportement local du champ à l’aide de
ces outils.

Le théorème de Gauss et le caractère conservatif de la circulation permettent
une étude complète du champ électrostatique.
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4. Le théorème de Gauss

Le flux sortant du champ d’une distribution à travers une surface
fermée S est égal à la charge de située à l’intérieur de S divisée par �0 :

, avec dS
→

� n→ext dS .

Le flux sortant du champ d’une distribution de masses à travers une
surface fermée S est égal à la masse Mint située à l’intérieur de S mul-
tipliée par – 4πG :

.

Doc. 5. Le flux de EM (créé par
Qint � Qext ) à travers (S) ne dépend
que de Qint .

next

(S)

Qext

Q int

�



3.2. Conservation du flux du champ

En l’absence de charges, le flux du champ électrostatique est conservatif : le
flux est le même à travers toutes les sections d’un même tube de champ.
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4. Le théorème de Gauss

Champ au voisinage
de l’axe de révolution d’une distribution

Nous avons déjà calculé le champ créé sur son axe par
un disque de rayon R portant la charge surfacique uni-
forme � :

E
→

� .

Cherchons maintenant à déterminer l’expression du
champ à faible distance, notée r , de l’axe du disque.
Nous nous contenterons d’établir l’écart entre ce champ
et sa valeur sur l’axe à l’ordre un en r .

1) En utilisant les symétries du problème, simplifier a
priori les composantes, en coordonnées cylindriques
d’axe (z’z) , du champ électrostatique créé par
le disque en un point quelconque.

2) En utilisant une surface de Gauss ayant la forme d’un
petit cylindre d’axe (z’z), de rayon r et de hauteur d z
(doc. 6), montrer que la composante radiale du champ
est liée à la valeur du champ sur l’axe par :

Er (r , z) � .

3) Considérant le petit contour rectangulaire (C)
représenté sur le document 6, évaluer :

Ez (r , z) �Ez (axe) .

1) Notons M le point de coordonnées cylindriques
(r , � , z). Le plan contenant le point M et l’axe (z’z) est
un plan de symétrie de la distribution de charges, par
conséquent E� �0 . La distribution possède de plus la symé-
trie de révolution autour de l’axe (z’z), donc :

E
→

�Er (r , z) e→r �Ez (r , z) e→z .

2) Appliquons le théorème de Gauss à la surface
fermée proposée. Elle ne contient aucune charge créant
le champ étudié. Nous obtenons, en ne considérant que
les termes d’ordre d’approximation le plus simple :

πr2 Ez (0, z + dz) – πr2 Ez (0, z)

� 2πr dz . Er (r , z) �0 ,
ceci nous donne bien :

Er (r , z) � � … .

3) La circulation du champ électrostatique sur le contour
fermé (C) est nulle. De plus, compte tenu du résultat pré-
cédent, nous constatons que les contributions à cette cir-
culation des parties AB et CD du contour sont d’ordre
deux en r . Nous en déduisons :

– Ez (r , z) dz �Ez (axe)(z) dz �0

à des termes d’ordre supérieur ou égal à deux en r près.

Ce résultat pourrait être obtenu par des considérations de
symétrie : tout plan contenant l’axe (z’z) est un plan-
miroir de la distribution, donc Ez est une fonction paire
de y (donc de r) et son développement limité ne peut
pas contenir de termes en puissance impaire de y (donc
de r).

Regroupant les résultats de 2) et 3), nous pouvons écrire
au voisinage de l’axe :

E
→

(r, z) � Ez (axe) (z) e→z

� .

Application 1

Doc. 6.

r

r
y
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z z

z + dz

M
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C
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3.3. Extrema du potentiel électrostatique

Le potentiel électrostatique ne possède pas d’extremum en dehors des charges.
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4. Le théorème de Gauss

En l’absence de charges, le flux du champ
électrostatique est conservatif

1) Montrer qu’en l’absence de charges le flux du champ
électrostatique est le même à travers toutes les sections
S1 , S2 … (doc. 7) d’un même tube de champ. Les sur-
faces étant toutes orientées dans le même sens.

2) Sur le document 7, où le tube de champ a tendance à
s’évaser lorsque nous nous déplaçons en suivant les
lignes de champ, quel est le comportement qualitative-
ment attendu pour la norme du champ électrostatique à l’in-
térieur du tube ?

1) Considérons deux sections S1 et S2 du tube (doc. 8),
et notons �1 et �2 les flux du champ à travers ces deux
sections. Soit S la surface fermée (avec les normales
orientées vers l’extérieur) constituée de la réunion de
S1

(–) (notée ainsi à cause du changement d’orientation),
S2 et St , la surface du tronçon tube permettant de refer-
mer le tout. Le champ étant tangent aux parois du tube,
son flux à travers St est nul, donc :

�(S ) ��1
(–) � �2 � – �1 � �2 .

Par hypothèse, la surface S ne renferme aucune charge,
donc �(S) � 0 et �1 � �2 . La conservation du flux
du champ le long du tube vide de charges est ainsi prouvée.

2) Le flux est conservatif et si la section du tube aug-
mente, la norme du champ doit diminuer.

Application 2

Doc. 7.

S1

tube de champ

S4S3S2

Doc. 8.

S1
(—)

S2

S t

Existe-t-il des extrema de potentiel
dans une zone sans charge ?

Montrer qualitativement que le potentiel électrostatique ne
possède pas d’extremum en dehors des charges.

Imaginons une région vide de charges, où le potentiel
électrostatique posséderait un extremum en un point M .
Supposons qu’il s’agisse, par exemple, d’un maximum (au
moins local). Les lignes de champ passant par
le point M doivent toutes diverger à partir de celui-ci,

car elles sont orientées dans le sens des potentiels décrois-
sants. Le flux du champ électrostatique à travers une petite
surface fermée contenant le point est ainsi positif, ce qui
contredit l’hypothèse d’absence de charges dans la région
du point M . Ce raisonnement par l’absurde s’applique, de
même, à un cas de potentiel minimal en M et prouve que
le potentiel électrostatique ne possède pas d’extremum en
dehors des charges.

Application 3



Calcul d’un champ électrostat ique4 à l ’a ide du théorème de Gauss
4.1. Principe du calcul
Le résultat du théorème de Gauss est remarquablement simple dans sa formulation.
Pour une distribution de charges connue, on peut penser calculer le flux du champ
à travers une surface fermée, puis en déduire l’expression du champ. Cette méthode
est séduisante puisqu’elle permet de s’affranchir du calcul du champ (ou du potentiel)
à l’aide d’expressions intégrales généralement assez contraignantes. Elle n’est toutefois
envisageable que lorsque le lien entre le calcul du flux et le champ reste élémentaire :
champ électrostatique d’expression déjà bien simplifiée, surface de géométrie
simple…, c’est-à-dire lorsque la distribution de charges possède de bonnes symétries.

Le calcul d’un champ électrostatique à l’aide du théorème de Gauss n’est en géné-
ral envisageable que dans des cas de distributions de charges à symétries élevées
tels que ceux développés ici.

Dans ces conditions, le principe de calcul correspond à la démarche suivante :

4.1.1. Première étape : considérations de symétries

Il faut obtenir, à l’aide des symétries de la distribution, la forme du champ électro-
statique :

• utilisation de plans de symétrie ou antisymétrie pour déterminer sa direction ;

• utilisation d’invariance par rotation ou translation pour réduire la dépendance de
ses composantes vis-à-vis des coordonnées (un choix de coordonnées adapté à
la symétrie du problème est évidemment indispensable).

4.1.2. Deuxième étape : choix de la surface de Gauss

La forme obtenue pour le champ détermine le choix d’une surface de Gauss
rendant élémentaire le calcul du flux. Cette surface, dite de Gauss, doit être fermée
et elle doit passer par le point M où on veut calculer le champ.

4.1.3. Troisième étape : application du théorème de Gauss

L’application du théorème de Gauss achève la détermination du champ électrostatique.

4.2. Distribution à symétrie plane
À titre d’exemple, nous nous intéressons à la détermination du champ créé par
une couche plane infinie, d'épaisseur e et de charge volumique � uniforme (doc. 9).

4.2.1. Première étape : utilisation des symétries de la distribution

Celle-ci est invariante par symétrie par rapport aux plans � 1 et � 2 contenant
le point M où nous cherchons à déterminer le champ, donc (doc. 10) :

E
→

(x , y , z) �E (x , y , z) e→z .

L’invariance du problème par translation parallèlement à (Ox), ou bien (Oy), nous
permet la simplification supplémentaire E

→

(x , y , z) �E (z) e→z .

Le théorème de Gauss constitue un outil de calcul rapide du champ
électrostatique créé par une distribution de charges possédant une symétrie
élevée : après détermination de la forme du champ, à l’aide de considé-
rations de symétrie, l’application du théorème de Gauss à une surface fer-
mée, de géométrie adaptée aux symétries du problème, permet de
déterminer l’amplitude du champ.
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4. Le théorème de Gauss

Doc. 9. Utilisation des symétries et
choix de la « surface de Gauss ». M’ est
le symétrique de M par rapport au plan
(xOy).
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Notons aussi que le plan (xOy) est un plan de symétrie de la distribution. Au point
M’, symétrique du point M par rapport à ce plan, le champ E’

→

est symétrique
du champ E

→

en M : la fonction E(z) est impaire : E (– z) = – E(z) .

4.2.2. Deuxième étape : choix de la « surface de Gauss »

Une surface fermée (S) permettant un calcul aisé du flux doit posséder des parties
planes à z �cte , le caractère impair de E(z) nous conduisant naturellement au
choix du document 9. Le flux du champ à travers cette surface fermée est :

� �SE(z) – SE(– z) � 2SE(z) .

4.2.3. Troisième étape : application du théorème de Gauss

Appliquons le théorème de Gauss à cette surface :

• cas 1 :0 	 | z | 	 : 2SE(z) � ;

• cas 2 : | z | 
 : 2SE(z) � .

Nous en déduisons :

• si 0 	 |z | 	 : E
→

� e→z ;

• si 	 |z | : E
→

� signe (z) e→z ,

c’est-à-dire E (z � ) � et E (z � – ) � � .

Nous pouvons en déduire le potentiel créé, en faisant par exemple le choix V �0 sur
le plan z � 0 . Ex et Ey étant nuls, le potentiel ne dépend que de la variable z ,

avec � – Ez . Raccordant le potentiel par continuité aux extrémités des

intervalles caractéristiques, nous avons :

• si 0 	 |z | 	 : V � – ;

• si 	 |z | : V � – .

Et la fonction potentiel V(z) est paire (doc. 10).
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1) Déterminer le champ créé par une nappe plane
infinie de charge surfacique � uniforme.

2) Reprenant l’expression du champ électrostatique créé
sur son axe par un disque de rayon R portant une charge
surfacique � uniforme, évaluer la hauteur h maximale
pour laquelle nous pouvons assimiler le disque à un plan
infini sans commettre une erreur relative supérieure à
1 % pour le calcul du champ.

1) Les propriétés de symétrie utilisées pour le cas de la
couche sont encore valables, donc :

E
→

(x , y , z) �E(z) e→z , avec E(– z) � – E(z) .

L’application du théorème de Gauss au même type
de surface nous donne E (z � 0) � .

Finalement E
→

� signe (z) e→z .

2) En un point d’abscisse z de l’axe du disque, nous
avions obtenu :

E
→

� signe (z) e→z .

Nous pouvons confondre cette valeur avec : signe(z),

avec une précision relative inférieure à 1 % si z � h,
avec � 0,01 , soit : h ≈ .

Application 4

Doc. 10. Champ E et potentiel V créés
par une onde plane infinie d’épaisseur
e et de charge volumique � uniforme.
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4.3. Distribution à symétrie cylindrique
L’exemple de distribution à symétrie cylindrique que nous allons traiter correspond
à un cylindre d’axe noté (Oz) et de rayon R à l’intérieur duquel se trouve une charge
volumique uniformément répartie � .

4.3.1. Première étape : utilisation des symétries de la distribution

En un point M de l’espace passent deux plans de symétrie de la distribution : � 1
qui contient le point M et l’axe (Oz), et � 2 perpendiculaire à (Oz) qui contient le
point M (doc. 12). Nous en déduisons, en coordonnées cylindriques d’axe (Oz) :

E
→

�E (r , � , z) e→r .

Les invariances du problème par translation parallèlement à (Oz) et par rotation
autour de cet axe amènent les simplifications supplémentaires E

→

�E(r) e→r .

4.3.2. Deuxième étape : choix de la surface de Gauss

Une surface (S) cylindrique d’axe (Oz) et de rayon r, fermée par deux disques sépa-
rés par une hauteur arbitraire h (doc. 11), constitue une surface de Gauss adaptée
à la géométrie du problème. Le flux du champ à travers cette surface fermée s’écrit
simplement � � 2π rhE (r), puisque ce flux est nul à travers les deux disques.

4.3.3. Troisième étape : application du théorème de Gauss

La charge intérieure à cette surface est :
Qint ��π r 2 h , si r � R et Qint � �πR 2 h , si r � R .

Nous en déduisons :

• r � R : E
→

� e→r ;

• r � R : E
→

� e→r .

Les inégalités pouvant être étendues au sens large puisque le champ créé par cette
distribution volumique est continu.

Remarque : Le calcul du champ à l’aide du théorème de Gauss est remarquable-
ment simple. Pour un cylindre chargé de hauteur finie, le théorème de Gauss serait
bien entendu applicable, mais malheureusement inutilisable (les plans parallèles
à (xOy) ne sont plus des plans de symétrie de la distribution de charges).

Utilisant E
→

�– grad
→

V � – e→r – e→� – e→z , nous obtenons

V (r , � , z) � V(r) , et en raccordant la solution par continuité en r � R :

• r � R : V � �V0 ;

• r � R : V � – � V0 .

V0 étant une constante arbitraire (indétermination du potentiel) ; notons qu’il est
impossible de fixer V �0 à l’infini car il y a des charges à l’infini.
E(r) et V(r) sont représentés sur le document 12. Une représentation de V (r )
dans l’espace est donnée sur le document 13.
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4. Le théorème de Gauss

Doc. 11. Surface de Gauss pour une dis-
tribution à symétrie cylindrique.

z

E
M

O

1

2

(S) �

�

Doc. 12. Champ et potentiel d’un
cylindre infini (V = 0 pour r = R).

E

RO

r

V

R
O

rV0

R
2 0�
�

Doc. 13. �
Potentiel créé par un cylindre uniformément chargé en volume. �
L’équipotentielle V �0 est choisie sur la surface du cylindre. �



Remarques
• Le champ n’est évidemment pas défini sur le fil, car cette distribution linéique
correspond à une distribution volumique locale tendant vers l’infini.
• Comme précédemment, le théorème de Gauss est valable pour le champ électro-
statique créé par un segment uniformément chargé, mais totalement inapplicable
pour le calcul de ce champ !
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4. Le théorème de Gauss

Fil infini de charge linéique uniforme

Reprendre l’étude précédente avec un fil infini portant
une densité linéique de charge uniforme.

Les considérations de symétrie conduisent encore à :
EN(M) = E(r)erM et V(M) = V(r) .

Appliquons le théorème de Gauss à la même surface fer-

mée. Nous avons : E 2π r h = ; il vient alors :

EN(M) = .

Il y a des charges à l’infini, donc pour la détermination
du potentiel, nous devons prendre une référence de poten-
tiel nulle à distance finie (en r = a par exemple) ; cela
donne :

V (M) = – .

Application 5

Cylindre infini de charge surfacique uniforme
Reprendre l’étude précédente pour un cylindre infini
portant la charge surfacique uniforme � .

Les considérations de symétrie conduisent encore à
E
→

� E(r) e→r et V � V(r). Appliquons le théorème de Gauss
à la même surface fermée. Nous avons maintenant :

Qint � 0 , si r � R et Qint � 2πRh� , si r � R .

Il vient alors :
• r � R : E

→

� 0
→

. Il est remarquable de trouver que le
champ est nul partout à l’intérieur de la cavité chargée
en surface.
• r � R : E

→

� e→r .

Les inégalités restent strictes, le champ électrostatique

subissant la discontinuité normale (attendue !) à la

traversée de la surface chargée. Le potentiel s’en déduit :
• r � R : V(r) �V0 ;

• r � R : V(r) � V0 � ln .

Remarquons que pour r = R , le champ électrique n’est
pas défini : la répartition surfacique de charge corres-
pond à une répartition volumique locale infinie.

Application 6
E

RO

r

V

R
O

rV0

2
�
�0

Doc. 14. Par convention V = V0 pour r = R .

Doc. 15. �
Potentiel créé par un cylindre uniformément chargé en surface

(s > 0). On visualise l’équipotentielle de potentiel
V �0 pour r > R (V0 > 0).

� Pour s’entraîner : ex. 1 et 7.



4.4. Distribution à symétrie sphérique
L’exemple type traité correspond à une charge volumique r distribuée uniformé-
ment à l’intérieur d’une boule de centre O et de rayon R . Nous noterons :

q � πR 3 �

la charge totale de cette boule (doc. 16).

4.4.1. Première étape : utilisation des symétries de la distribution

Considérant deux plans perpendiculaires � 1 et � 2 contenant le centre de symétrie
O et le point M où nous cherchons à déterminer le champ, nous obtenons en
coordonnées sphériques E

→

(r , � ,  ) �E (r , � ,  ) e→r (doc. 16) .

L’invariance de la distribution par rotation autour de tout axe contenant le centre
O apporte la simplification E

→

(r , � ,  ) � E (r) e→r .

4.4.2. Deuxième étape : choix de la surface de Gauss

La surface fermée adaptée à cette géométrie est naturellement une sphère de centre
O et de rayon r . Le flux du champ à travers cette surface est � �4πr2E(r) .

4.4.3. Troisième étape : application du théorème de Gauss

La charge intérieure à cette surface est :

Qint � πr3 � , si r � R et Qint � πR 3 � , si r � R .

Nous obtenons ainsi le champ continu de cette distribution volumique :

• r 	 R : E
→

� e→r � e→r ;

• r 
 R : E
→

� e→r � e→r .

Notons qu’à l’extérieur de la boule chargée, le champ créé est identique à celui d’une
charge q placée au centre de la sphère.

Remarque : r étant fini, le champ est partout continu et défini, même pour r = R .

Le potentiel, continu en r �R , s’en déduit :

• r 	 R : V(r) � �V 0 � �V 0 ;

• r 
 R : V(r) � � V 0 � � V 0 .

Aucune charge ne se trouvant à l’infini, nous pouvons convenir que V (r →∞) = 0
d’où V0 = 0.
E(r) et V(r) sont représentés sur le document 17.

4.4.4. Cas d’une distribution de masses

Le cas d’une distribution de masses à symétrie sphérique se traite de façon ana-
logue. Notons m la masse volumique uniforme à l’intérieur d’une sphère de rayon

R et m = πR3m la masse totale de cette sphère. En remplaçant q par m et

K = par – G, il vient :
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4. Le théorème de Gauss

Doc. 16. Surface de Gauss sphérique
par une distribution à symétrie sphé-
rique.

EO

R

S

M

�1

�2

Doc. 17. Champ et potentiel d’une boule
chargée.

E

R

R
3
�
�

O r

V

R r

V0

0



• Champ créé par cette distribution volumique :

r 	 R : Egm = – mrerl = – Gm erl .

r 
 R : Egm = – m rerl = – Gm erl .

• Potentiel créé par la sphère :

r 	 R : V = – m (3R2 – r2) + V0 = – Gm + V0 .

r 
 R : V = – m + V0 = – Gm + V0 .

À l’extérieur de la sphère, le champ et le potentiel de gravitation sont identiques à
ceux créés par une masse m placée au centre de la sphère.

� Pour s’entraîner : ex. 8 et 9.
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4. Le théorème de Gauss

Sphère de charge surfacique uniforme

Reprendre cette étude pour une sphère de centre O et de
rayon R portant la charge surfacique uniforme � . Sa
charge est notée q �4πR 2 � .

La symétrie sphérique du problème conduit à :
E
→

�E(r) e→r et V � V(r) .
L’application du théorème de Gauss à la sphère de rayon r ,
avec Qint �0 , si r � R et Qint � 4πR2� �q , si r 
 R.
Il en résulte que :
• r 	 R : E

→

�0
→

;

• r 
 R : E
→

� e→r � e→r .

La discontinuité normale du champ est obtenue en
r �R .

Le potentiel, continu en r �R , s’en déduit :

• r 	 R : V(r) �V0 � ;

• r 
 R : V(r) � � V0 � �V0 .

On pourrait, ici, choisir V = 0 à l’infini ce qui donnerait
V0 = 0 .

Application 7

E

R

�
�

O r
V

RO r

V0

0

Doc. 18. Allures de E(r ) et V (r).
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4. Le théorème de Gauss

C Q F R

● THÉORÈME DE GAUSS

• Le flux sortant du champ d’une distribution � à travers une surface fermée (S) est égal à la charge de �
située à l’intérieur de S divisée par e0 :

, avec dS
→

� n→ext dS .

• Le théorème de Gauss et le caractère conservatif de la circulation permettent une étude complète du champ
électrostatique.

• En l’absence de charges, le flux du champ électrostatique est conservatif : le flux est le même à travers toutes
les sections d’un même tube de champ.

• Le potentiel électrostatique ne possède pas d’extremum en dehors des charges.

• Le flux sortant du champ de gravitation d’une distribution � de masses, à travers une surface fermée S est égal à
la masse Mint située à l’intérieur de (S) multipliée par – 4πG :

.

• À l’extérieur d’un astre à symétrie de révolution, le champ de gravitation est le même que celui créé par un point
matériel placé au centre de l’astre et dont la masse est celle de l’astre.

● DÉTERMINATION D’UN CHAMP À L’AIDE DU THÉORÈME DE GAUSS

Le théorème de Gauss constitue un outil de calcul rapide du champ électrostatique créé par une distribution de
charges possédant une symétrie élevée : après détermination de la forme du champ, à l’aide de considérations
de symétrie, l’application du théorème de Gauss à une surface fermée, de géométrie adaptée aux symétries du
problème, permet de déterminer l’amplitude du champ.
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Avez-vous retenu l’essentiel ?

✔ Donner l’expression du flux élémentaire dF du champ électrique Ek créé par une charge ponctuelle q placée
en O.

✔ Énoncer le théorème de Gauss pour le champ électrostatique.

✔ Énoncer le théorème de Gauss pour le champ de gravitation.

✔ Démontrer que le potentiel électrostatique ne possède pas d’extremum en une région vide de charges.

✔ Démontrer qu’en l’absence de charges, le flux du champ électrostatique est conservatif.

✔ Montrer qu’en l’absence de charges, lorsque la section d’un tube de champ diminue, le champ augmente en norme.

✔ Qu’appelle-t-on surface de Gauss et comment la détermine-t-on ?

✔ Calculer rapidement le champ électrostatique créé par :

• une sphère uniformément chargée en volume ;

• un cylindre infini uniformément chargé en volume ;

• un plan uniformément chargé en surface ;

• un fil rectiligne infini.

Du tac au tac (Vrai ou faux)

Contrôle rapide

1. Une charge ponctuelle q , placée dans le champ
d’une distribution de charges, ne trouve aucune
position d’équilibre stable.

❑ Vrai ❑ Faux

2. Le flux F à travers une surface fermée (S) tra-
cée dans une distribution volumique de charges

r (M) est : F = .

❑ Vrai ❑ Faux

3. Le flux F à travers une surface fermée (S) por-
tant une distribution surfacique de charges s (M)

est : F = .

❑ Vrai ❑ Faux

4. Le flux du champ électrique à travers une sur-
face ouverte ne peut jamais être nul.

❑ Vrai ❑ Faux

5. Soit (S1) et (S2) deux surfaces ouvertes qui
s’appuient sur la même courbe fermée (C). Le
flux du champ électrostatique est le même à tra-
vers ces deux surfaces, en l’absence de charges
comprises entre (S1) et (S2).

❑ Vrai ❑ Faux

6. Le champ de gravitation créé par la Terre,
supposée à symétrie sphérique, est le même
que celui créé par un point matériel placé au
centre de la Terre et dont la masse est celle de
la Terre.

❑ Vrai ❑ Faux

7. À l’extérieur d’un astre de masse M à symétrie
sphérique, l’énergie potentielle d’un point
matériel de masse m situé à la distance r est :

�P(r) = – + V0 .

❑ Vrai ❑ Faux

� Solution, page 77.
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4. Le théorème de Gauss

Champ créé par un fil rectiligne infini

Examiner le cas d’un fil rectiligne infini en l’obtenant comme
une limite à définir du cas du cylindre infini.

Flux du champ créé par une charge
à travers un disque

Une charge ponctuelle q est pla-
cée en A sur l’axe (Oz) d’un
disque de centre O et de rayon
a .
Le disque est orienté par le vec-
teur unitaire ezm et on note a le
demi-angle au sommet du cône
de sommet A et de base le
disque.
La distance AO est notée d .
Calculer le flux F du champ
créé par la charge q à travers le
disque.

Flux : analogie avec un filet à papillon

Soit un « filet à papillon » d’ouverture circulaire R (donc de
section � �πR 2 ) et dont le filet a une surface totale S ; il
est placé dans un champ électrostatique E

→

. Dans la zone de
l’espace considérée, il n’y a aucune charge. Ce filet permet
d’accéder à la valeur moyenne du champ, en lisant le flux entrant
(valeur donnée par le filet) de ce champ à travers « ce filet à
champ ».

1) Le champ E
→

est uniforme.
Comment faut-il placer ce filet pour mesurer E

→

?
La surface du filet est-elle gênante ?
Est-il possible de connaître la direction du champ E

→

?

2) Le champ E
→

est non uniforme dans une zone sans charge.
Où placer ce filet pour capter le maximum de flux ?
Où le champ est-il maximum ?

Flux du champ créé par une charge
à travers un carré

Une charge ponctuelle q
est placée en A sur l’axe
d’un carré de côté a . La
distance entre la charge et
le plan est :

AO = .

Calculer le flux F du
champ créé par la charge
q à travers le carré.

Loi locale de Maxwell-Gauss,
équation de Poisson

Nous établirons ici l’ex-
pression de ces lois en coor-
données cartésiennes.
Considérons le parallélépi-
pède rectangle élémentaire
représenté sur le schéma.
Les points A et B ont pour
coordonnées cartésiennes
respectives (x , y , z) et :
(x �dx , y � dy , z � dz) .
La charge volumique du milieu est notée � .
En appliquant le théorème de Gauss au parallélépipède, établir :

.

En déduire l’équation différentielle liant le potentiel à la den-
sité volumique de charges, appelée équation de Poisson.

Double couche chargée

Calculer le champ et le potentiel pour une double couche char-
gée � �� 0 pour 0 � z � e et � � – �0 pour – e < z < 0.
On prendra V = 0 sur le plan (x, y) (z = 0).

Exercices

q

OO

a

A

z

a—
2

flux

flux

xA (x, y, z)

B (x + dx, y + dy, z + dz)

y

z
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Distribution cylindrique
correspondant à un champ donné

Un champ à symétrie cylindrique E
→

�E(r) e→r a pour expres-

sion E
→

� (Ar) e→r , si r � a et E
→

� e→r , si r � a .

Déterminer la distribution de charges qui crée ce champ, puis
le potentiel électrostatique associé.

Cavité dans une boule
uniformément chargée

Une boule de rayon a portant la
charge volumique uniformé-
ment répartie � possède une
cavité sphérique de rayon b vide
de charges. Déterminer le champ
dans la cavité.

Couches de glissement

Le schéma a) représente une sphère de centre O et rayon R
portant la charge surfacique � �� 0 cos � .

Le schéma b) représente deux boules de rayon R, de centres
respectifs O� et O� d’abcisses � et � sur l’axe

(Oz), chargées uniformément avec les densités volumiques
respectives � � 0 et � � 0 .

Montrer que la première distribution peut être obtenue comme
la limite de la seconde lorsque la distance a tend vers zéro, à
condition d’imposer une relation particulière liant �0 , a et �0 .

Champ créé par une sphère

Une boule de rayon a porte la charge surfacique : � ��0 cos �
sur sa surface, avec �0 � 0. Cette répartition de charges est
à symétrie de révolution autour de l’axe (Oz).

Déterminer le champ à
l’intérieur de la sphère.

Lignes de champ d’un doublet de charges
dans l’approximation dipolaire

Deux charges opposées � q et �q sont placées sur l’axe (Oz)

aux points d’abscisses � et � respectivement.

À l’aide du théorème de Gauss, montrer que l’équation d’une
ligne de champ telle que celle représentée sur la figure est
cos a 2 �cos a 1 �cte .

Nuage électronique et énergie d’ionisation

Un système de charges crée le potentiel à symétrie sphérique :

V(r) � (q � 0) .

Calculer Q(r), charge comprise dans la sphère de rayon r .

Caractériser la distribution de charges correspondant à ce
potentiel.

Définir, puis exprimer l’énergie de liaison de ce système.

Allure des lignes du champ
électrostatique E

→

Les schémas ci-après représentent, dans un plan (x, y)
(z �cte), quelques cartes de champs bidimensionnels de la
forme :

E
→

(x, y, z) � Ex (x, y) e→x �Ey (x, y) e→y .

a
O1

�

O2
b

�

= 0 cos� ��

z
y

x

2

1

– q + q

M

ligne de champ

O

�

�

z

z

�

O

R

+

+

+

+

+

+

+

+

++–
–

–

–

–
–

–

0�+

b)

zO–

�

O+

0�–

a

O

a)
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4. Le théorème de Gauss

Le cylindre infini porte une

charge � �πR2� par unité de longueur.
Gardant ce terme constant en faisant
tendre R vers 0 , nous obtenons une dis-
tribution limite correspondant à un fil
rectiligne infini portant la charge
linéique �.
Le cas r � R étant alors le seul utilisable,
nous constatons que :

E
→

� e
→

r

peut aussi s’écrire : E
→

� e
→

r . Nous retrouvons le résultat établi au chapitre 3,

ainsi que celui de l’Application 5 du présent chapitre.

Considérons la sphère de

centre A et de rayon :

R = .

La circonférence (C) du disque est
tracée sur cette sphère. D’après ce
qui a été vu en § 1.2.2., le flux à tra-
vers le disque est égal au flux à tra-
vers la calotte sphérique délimitée
par la circonférence (C) :

F =

où S est l’aire de la calotte sphé-
rique.
En coordonnées sphériques, l’élément d’aire sur une sphère de rayon R est :

d2S = R sin q dq . Rdj ,
ce qui donne par intégration sur la calotte sphérique :

S = R2 sinqdq dj = 2 πR2(1 – cosa).

En conclusion : F = (1 – cosa).

Corrigés
Solution du tac au tac, p. 74.
1. Vrai ;
2. Vrai ;
3. Faux ;

4. Faux ;
5. Vrai ;
6. Vrai ;
7. Vrai.

R

er

a

O
a

d

A

R

B' B

z

Préciser, dans chaque cas, s’il peut s’agir d’un champ élec-
trostatique, et si oui, indiquer si des charges sont présentes
dans la région représentée.

y

z x

a)

y

z x

d)

O

y

z x

e)

O

y

z x

c)

O

V

y

z x

b)
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Commentaire

Dans une zone sans charge, donc dans une zone où le flux du champ E
→

est conser-
vatif, la surface S du filet de ce « filet à papillon » n’intervient jamais dans le nombre
de papillons captés, donc dans la valeur du flux capté. Ce flux ne dépend que du
contour sur lequel s’appuie cette surface, donc de la section circulaire de l’ouverture
du filet.

1) Il faut que la normale à l’ouverture circulaire du filet soit parallèle au champ pour
obtenir un flux extremum. Si le signe du flux entrant (valeur lue) est positif et maxi-
mum, E

→

est perpendiculaire à l’ouverture du filet et entrant.

2) Nous sommes dans une zone de l’espace sans charge. Le flux du champ E
→

est donc
conservatif, c’est-à-dire que le flux de E

→

à travers un tube de champ est invariant. Le
champ est donc d’autant plus important que les lignes de champ se resserrent. Pour
avoir un flux maximum, il faut donc déplacer l’ouverture du filet vers la droite, là où
les lignes de champ se resserrent.

Complétons la figure en faisant de A le centre d’un cube de côté a . Le flux

à travers les six faces du cube est F t = 6F . Pour évaluer F t , il suffit de considé-
rer une sphère (S) de centre A et de rayon R arbitraire. D’après la remarque du
§ 1.2.2., le flux à travers le cube est égal au flux à travers la sphère (S).

Donc f t = et, en définitive, le flux à travers le carré est : f = .

Considérons la surface fermée enveloppant le parallélépipède et appliquons

le théorème de Gauss.
Le flux sortant du champ à travers cette surface fermée élémentaire est donné par (en
ne faisant apparaître que les termes « utiles », c’est-à-dire en se limitant aux termes
de même ordre non nul) :
�d x d y . E z (x, y ,z � d z) � d y d z . E x (x � d x, y, z)

� d x d z . E y (x, y � d y, z)
� d x d y . E z (x, y, z) � d y d z . E x (x, y, z) �d x d z . E y (x, y, z) .

Cette quantité est égale à la charge élémentaire située à l’intérieur de ce volume :

d x d y d z . , soit d x d y d z d x d y d z .

En utilisant la relation E
→

�� grad
→

V �� e
→

x � e
→

y � e
→

z , nous

en déduisons appelée équation de Poisson.

Chacune des couches crée un champ Eim et le champ Em de la double couche

s’obtient par superposition des deux champs : Em = E1m + E2m . Les champs Eim s’ob-
tiennent par application du théorème de Gauss comme indiqué en § 4.2.
• Couche (1) de densité r0 :

0 	 z 	 e :

sinon :

signe .

• Couche (2) de densité – r0 :

– e 	 z 	 0 :

sinon :

signe .

Au total :

e 	 z :

0 	 z 	 e :

– e 	 z 	 0 :

z 	 – e : .

Le champ est nul en dehors de la double couche.
Nous en déduisons l’expression du potentiel (raccordement par continuité aux change-
ments de zone) :

e 	 z : V = e2

0 	 z 	 e : V = (2ez – z2)

– e 	 z 	 0 : V = (2ez + z2)

z 	 – e : V = e2

z

E

– e e

0 e�–
�02

0 e2�
�02

0�
�02
e2

z

V

– e
e

–

flux

0

flux

max. positif
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4. Le théorème de Gauss

Le système est à symétrie de révolution cylindrique. Nous pouvons donc cher-

cher une répartition de charges ayant cette symétrie. Notons Q (r, h) la charge conte-

nue dans un cylindre d’axe (Oz), de rayon r et de hauteur h . L’application du théo-

rème de Gauss à la surface fermée cylindrique délimitant cette charge nous donne :

�2π r h E (r)

(le flux sortant de E à travers les bases de ce cylindre est nul), soit :
• si r � a : Q (r, h) �2π� 0 Ar 2 h ;

• si r � a : Q (r, h) � 2π� 0 B h .

Déterminons la densité volumique de charges en considérant la charge. La charge
Q (r �d r , h) �Q (r , h) est contenue entre deux cylindres de rayons r et r � d r et
de hauteur h :

2π r d r . h � (r) �Q (r � d r , h) �Q (r , h) � d r .

Nous obtenons ainsi :
• si r � a : � (r) � 2 � 0 A ;

• si r � a : � (r) � 0 .

La quantité Q (r, h) subit une discontinuité éventuelle en r �a . Cela correspond à
une charge surfacique � , répartie sur le cylindre de rayon a :

2πa � � Q (r � a�) �Q (r �a�) , soit � � � 0 .

Cette distribution correspond à la superposition de deux distributions �1 et �2 .

� 1 correspondant à une charge volumique r uniformément répartie dans la sphère de

centre O1 et de rayon a , et �2 à une charge volumique�� dans la sphère de centre

O 2 et de rayon b . Dans la cavité, donc à l’intérieur de ces deux sphères, � 1 crée le

champ E
→

1 (M) � O1M
→

et � 2 le champ E
→

2 (M) � � O2M
→

.

Le champ total dans la cavité est donc égal à E
→

(M) � O 1 O 2
→

.

Il est uniforme dans la cavité.

Les simulations ci-dessus montrent le tracé des lignes de champ et des équipoten-
tielles du système de charges, ainsi que les variations du potentiel : le champ est bien
uniforme à l’intérieur de la cavité.

Dans le cas a), notons dS l’élément de surface dans la direction (q, j) en

coordonnées sphériques d’axe (Oz). Cet élément de surface porte la charge :

dq = s dS = s0 cos q dS .

Dans le cas b), évaluons l’élément de volume dt dans la même direction (q, j ),
lorsque a << R : dt = h dS = a | cosq |dS.

Cet élément de volume contient la charge : dq = r0a cos q dS.
En comparant les deux expressions de la charge dq, nous pouvons considérer la sphère
chargée comme limite de l’ensemble des deux boules, lorsque a << R, en imposant
la condition : r0 a = cte = s 0 .

Cette distribution correspond à la superposition de deux distributions �1 et

� 2 . � 1 correspondant à une charge volumique � � (� � 0) uniformément répar-
tie dans une sphère de centre O1 et de rayon a , et � 2 à une charge volumique uni-
forme � répartie dans une sphère de centre
O2 et de même rayon a . L’équivalence
des répartitions est obtenue lorsque
�0 �lim (�O1O2) quand O1O2 tend vers
zéro, et simultanément � vers l’infini. Les
résultats de l’exercice précédent indiquent
que le champ dans la cavité est :

E (M)
→

�� .

Il est uniforme dans la cavité.

�

�h = a|cos |

O–

O
a O+

plan incliné
(champ uniforme)

cavité

�

+ �– �

O1 O2 z
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• Le flux du champ est conservatif en l’absence de charges
L’ensemble des lignes de champ est de révolution autour de l’axe (Oz). Soit un tube
de champ engendré par la rotation d’une ligne de champ autour de l’axe (Oz). Le flux
du champ est le même à travers les sections �1 et �2 du tube dans la mesure où il
n’y a pas de charges dans le tronçon du tube de champ situé entre ces deux sections.

• Écrivons la conservation du flux du champ à travers ce tube de champ
Le flux du champ électrostatique E

→

créé par une charge q ponctuelle à travers un

disque � quelconque est donné par � � (1 – cos a) (cf. exercice 2).

Le flux de E
→

dû aux deux charges � q et �q à travers la surface �2 s’écrit donc :

� �

soit : � � ,

d’où l’équation cos a 2 �cos a 1 �cte . (Notons que cette équation est à rapprocher

de l’équation qi cos �i �cte obtenue dans l’exercice 10 chapitre 2, sans utiliser

le théorème de Gauss.)

Le champ électrostatique créé par cette distribution de charges est :

E
→

��grad
→

V( r
→ ) � .

Appliquons le théorème de Gauss à la sphère de rayon r et centre O :

Q (r)��0 �sphère
E
→

. d S
→

�� 0 4π r 2 (E
→

. e
→

r) �q .

La répartition de charges est de symétrie sphérique autour du point O. La charge conte-
nue entre les sphères de centre O et de rayons r et r �d r est 4 π r 2 � (r) d r ,

s’identifie à Q (r �d r) �Q (r) � d r , donc :

� (r) � .

Cette densité de charges est toujours négative, alors que la charge totale de la
distribution est Q (r →∞) �0 . N’oublions cependant pas la singularité du potentiel à
l’origine, où il se comporte asymptotiquement comme le potentiel d’une charge

ponctuelle q placée en O : . Nous avons Q (r → 0) �q , ce qui prouve bien

la présence d’une charge ponctuelle positive q en O entourée par un halo de charges
négatives de densité volumique � (r) et de charge globale �q .

L’énergie de liaison est l’énergie à fournir pour séparer la charge � q du nuage de
charge négative �q , en l’emmenant depuis le point O jusqu’à l’infini. Cette énergie
d’ionisation vaut : q (V�(∞) � V�(O)) �� qV�(O) , où V�(O) désigne le poten-
tiel créé par le nuage négatif seul au point O , égal à :

V�(O) � .

Par conséquent � liaison � .

• Cas a

La circulation de ce champ est conservative (nulle sur toute courbe fermée). Il s’agit
d’un champ uniforme E

→

0�E 0 e
→

x . Le potentiel dont il dérive est égal à �E 0 x .
Le flux de ce champ à travers toute surface fermée est nul ; il n’y a pas de charges créant
ce champ dans la zone représentée, car son flux est conservatif.

• Cas b
La circulation de ce champ est conservative. Les lignes de champ sont encore rectilignes
mais correspondent à un champ non uniforme. Le potentiel dont il dérive est donné par :

V(x) �V(O) � E (x) d x .

Le flux du champ à travers un parallélépipède rectangle de volume :

d � �d x d y d z est égal à d y d z [E (x �d x) �E (x)] � d x d y d z .

Dans la zone représentée, il y a des charges réparties avec la densité :

� (x) �� 0 .

• Cas c
Si la fonction E (r) n’est pas continue sur une surface cylindrique, il existe sur cette
surface de discontinuité une répartition de charges surfaciques � telle que :

� (r) �� 0 (E r �
�Er �

) .

• Cas d et e
Dans les deux cas la circulation du champ sur un cercle de centre O sera non nulle.
La circulation n’est donc pas conservative. Ce n’est pas un champ de nature électro-
statique. Nous verrons dans les chapitres suivants que le champ est de nature
magnétostatique dans le cas d.
Le cas e représente la superposition de deux champs : l’un de nature électrostatique,
l’autre de nature magnétostatique.

– q + qO z
2�

1�

1�

ligne de champ
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Dipôle
électrostatique

Les atomes, les molécules et les milieux matériels
sont électriquement neutres.

Parfois, les barycentres des charges positives
et des charges négatives apparaissent décalés.

L’entité observée, le milieu étudié
sont alors dits polarisés.

Les propriétés électriques d’une entité polarisée
peuvent être décrites,

en première approximation,
à l’aide d’un modèle élémentaire :

le doublet de charges.
Celles d’un milieu polarisé le seraient

à l’aide d’une répartition
de doublets microscopiques

(en seconde année).

O B J E C T I F S

■ Modèle du dipôle.
■ Champ et potentiel dipolaires.
■ Actions exercées par un champ sur un dipôle.

P R É R E Q U I S

■ Champ électrostatique.
■ Potentiel électrostatique.

5
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5. Dipôle électrostatique

Le modèle du dipôle1
1.1. Moment dipolaire

1.1.1. Moment dipolaire d’une distribution de charges globalement
neutre

Considérons dans la distribution � l’ensemble des charges positives dont la somme
est notée �q et l’ensemble des charges négatives dont la somme vaut – q , q étant
supposée non nulle.
Nous pouvons définir A�, le barycentre des charges positives de � , et A– le
barycentre des charges négatives de � .
Le moment dipolaire de la distribution est par définition : p→ �q A–

→

A�.
Il s’évalue en coulomb . mètre (C . m).

1.1.2. Doublet de charges

Le modèle le plus simple de dipôle est un doublet de charges opposées et séparées
par une distance que nous noterons d (doc. 1).

1.2. Objets polaires

1.2.1. Molécules polaires

Ces molécules présentent au repos une séparation de charges.

Une molécule diatomique telle que le chlorure d’hydrogène HCl possède une liaison
polaire (doc. 2). Son nuage électronique est asymétrique, les électrons se trouvant
préférentiellement au voisinage de l’atome de chlore.

Des édifices moléculaires plus complexes présenteront de même une polarité per-
manente : la molécule d’eau H2O, triangulaire, possède un moment dipolaire résul-
tant de la polarité des liaisons OH. De même la molécule d’ammoniac NH3, pyra-
midale, possède trois liaisons NH polarisées (doc. 3). Dans les molécules
polyatomiques, la présence de doublets libres sur certains atomes doit parfois être
prise en compte.

1.2.2. Polarisation due à un champ appliqué

Un atome et une molécule peuvent aussi être polarisés par l’action d’un champ
appliqué : en effet, celui-ci déplace en sens opposé les charges positives et néga-
tives. Les nuages électroniques sont déformés par ce champ appliqué, les longueurs
et les angles des liaisons chimiques peuvent être modifiés. Ces modifications, géné-
ralement faibles, correspondent à une apparition ou à un changement de la polarité
(doc. 4). On parle d’atomes ou de molécules polarisables.

Remarques

Les atomes, les ions, les molécules (polaires ou non au repos) et plus généralement
les milieux matériels sont susceptibles d’être polarisés par un champ appliqué.
Ainsi un certain nombre de phénomènes liés à la polarisation peuvent être obser-
vés dans la matière.

Un objet non chargé mais polarisé crée à grande distance un potentiel et
un champ analogues (en première approximation) à ceux d’un doublet de
charges de moment dipolaire p→ non nul ( q � 0 ) :

p→ �qd
→

et d
→

� A–
→

A� .

Doc. 1. Doublet de charges.

p = q d

d
– q + q

Doc. 3. Moments dipolaires des molé-
cules H2O et NH3 .

p p

H H

NO

H

H

H

Doc. 4. Polarisation d’un atome placé
dans un champ E

→

:
p→ = a E

→

, avec a � 0.

�p = E

E

–

+

centre de
la sphère noyau

nuage
électronique

Doc. 2. Molécule diatomique.

Cl
( –)

H
( +)� �

p



• Les ions d’un cristal ionique se trouvent déplacés par l’action d’un champ appliqué
par rapport à leur position au repos (en sens opposé pour des charges de signes
opposés), ce qui fait apparaître de nouveaux moments dipolaires. Ce phénomène
porte le nom de polarisation ionique.
• Nous verrons aussi qu’un dipôle tend à s’orienter parallèlement au champ qui
lui est appliqué. Un matériau contenant des entités polaires susceptibles de s’orienter
peut ainsi être polarisé lorsqu’un champ lui est appliqué (une compétition s’en-
gage entre l’effet d’orientation du champ appliqué et la tendance au désordre liée
à l’agitation thermique). On parle alors de polarisation d’orientation.

� Pour s’entraîner : ex. 2.

1.2.3. Unité de moment dipolaire en chimie

Les entités chimiques ont des charges de l’ordre de q = 10�19 C et des dimensions
de l’ordre de � = 10�10 m. Une unité de moment dipolaire adaptée aux besoins des
chimistes doit être de l’ordre de p = q, = 10�29 C . m. C’est pour cette raison que les
chimistes utilisent le debye (symbole : D), bien que cette unité de moment dipolaire
appartienne à un système d’unités actuellement abandonné.

1D � . 10�29 C . m .

On trouvera, sur le document 5, quelques moments de molécules polaires.

Potentie l et champ créés par un dipôle2
Nous nous limiterons au calcul et à la représentation de ces grandeurs pour le modèle
du doublet.

2.1. Approximation dipolaire
Si nous nous intéressons aux effets produits par le dipôle, l’approximation dipolaire
consiste à supposer la distance à laquelle nous observons le champ créé par le dipôle
très grande devant ses dimensions : r �� d .
Dans ces conditions, nous mènerons les calculs en ne déterminant que les termes

d’ordre le plus bas en .

2.2. Potentiel du dipôle
La distribution considérée (doublet) étant d’extension finie, nous pouvons choisir
le potentiel nul à l’infini, et l’écrire, avec les notations du document 6 :

V(M) � .

Utilisant les coordonnées sphériques d’axe (Oz) indiquées sur le document 6, nous

avons r1 � et r 2 � .

Dans l’approximation dipolaire, nous écrirons à l’ordre un en
(*)

:

V(M) � .

Remarque : Notons que pour ce modèle de dipôle, le second terme non nul est propor-

tionnel à
(**)

.
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5. Dipôle électrostatique

Doc. 6. Le point M est repéré par son
vecteur position r→ = OM

→

ou par ses coor-
données sphériques : (r, θ, j).

M

O
– q + q

r2

r

r1

�
 

d

z

H2O NH3 HCl

1,85 D 1,47 D 1,08 D

Doc. 5. Moments de molécules polaires.

Développement limité de (1 + x)a

Pour x �� 1 , nous pouvons écrire :

(*) (1 �x)a � 1 + a x à l’ordre un ;

(**) (1 �x)a � 1 + a x + a x2

+ x3

à l’ordre trois.



La charge totale de ce système étant nulle, le terme en du potentiel s’annule ;

le premier terme non nul du développement limité est proportionnel à . Il

décroît beaucoup plus vite à grande distance que le potentiel d’une charge seule :

V(M) � .

En utilisant l’expression du moment dipolaire, le potentiel électrostatique
créé par un dipôle placé au point O, à l’ordre le plus bas en puissances de

, est : V(M) � � .

Du fait de la symétrie de révolution de la distribution autour de l’axe (Oz) , ce poten-
tiel ne dépend pas de l’angle  .

Remarque

Pour une distribution de charges quelconque existant dans une zone réduite de l’es-
pace au voisinage d’un point P , étudions le potentiel créé en M (r = PM étant
grand devant les dimensions de la zone des charges) par cette distribution.

• Si la charge totale q de cette distribution est non nulle, le terme prépondérant

du potentiel est . Soit un potentiel en .

• Si la charge q est nulle, le terme précédent n’existe pas : il faut s’intéresser au
moment dipolaire p→ de cet ensemble de charges. Si p→ est non nul, le terme

prépondérant du potentiel est . Soit un potentiel en .

• Si la charge q et le moment dipolaire p→ sont nuls, les termes précédents n’existent
pas : il faudrait alors pousser plus loin le développement du potentiel V(M).

2.3. Champ du dipôle

2.3.1. Expression en coordonnées sphériques

Le développement de l’expression E
→

(M) � est délicat et nous

déterminons le champ en calculant le gradient du potentiel qui vient d’être obtenu.
En coordonnées sphériques (cf. Annexe) :

Er �

E� �

E � � 0 .

Le plan contenant OM et l’axe (Oz) est un plan de symétrie de la distribution, il est
naturel de trouver E

→

. e→ �0 (doc. 7).

L’expression du champ du dipôle est :

E
→

(M) � .2p cos 	 .e→r �p sin 	 .ee→	���
r 3

84

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

5. Dipôle électrostatique

{
Doc. 7. Orientation de E

→

créé par un
dipôle p→.

O
�

 

�

p

E ere

e

r

z

�
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5. Dipôle électrostatique

2.3.2. Expression intrinsèque

Le moment dipolaire p→ peut s’écrire p→ �p (cos q .e→r – sin q .e→� ) .
Nous pouvons alors donner de E

→

(M) une expression sous une forme intrinsèque
(pour un dipôle en O, sans référence à un choix d’axes particulier).

Sous forme intrinsèque, le champ du dipôle est :

E
→

(M) � .

Ou bien : E
æÆ

(M) � .

Remarques

• Le champ d’un dipôle décroît plus vite que celui d’une charge ponc-

tuelle .

• La seule caractéristique du dipôle qui apparaît dans les expressions du potentiel
V(M) et dans celle du champ E

→

(M) est son moment dipolaire p→.
Un dipôle est entièrement caractérisé par son moment dipolaire.

� Pour s’entraîner : ex. 5, 6 et 7.

2.4. Topographie de E et V

2.4.1. Équation et description qualitative

La distribution de charges d’un dipôle, dont le moment dipolaire p→ est sur l’axe
(Oz), admet cet axe comme axe de révolution. De ce fait, l’équation du potentiel
V (M ) ne dépend pas de la coordonnée j et les surfaces équipotentielles sont de
révolution autour de (Oz). Une représentation graphique de leurs traces dans un
plan de symétrie (j = cte) contenant l’axe (Oz) est dès lors suffisante (doc. 8).

La ligne équipotentielle V = V0 a pour équation polaire : .

C’est l’équation d’une courbe fermée, symétrique par rapport à l’axe (Oz) et
passant par l’origine.
Le signe de cos q reste constant sur la ligne équipotentielle. Si V0 > 0, cette ligne
équipotentielle se situe dans le demi-plan z > 0, du côté de la charge positive.

Autres caractéristiques du champ
d’un dipôle

En utilisant les notations du document 7, déterminer la
norme de E

→

(M) et son inclinaison a sur le support du
vecteur position OM

→

.

En notant E la norme de E
→

, il vient :

E

L’inclinaison a (doc. 7) de E
→

sur le support de OM
→

est
déterminée par :

.

Application 1

Doc. 8. Équipotentielles �V0 du dipôle.

p

V = – V0 V = V0
V = 0

M
r

�

= 0�=�
�
2



Le plan médiateur (xOy) du doublet correspond à l’équipotentielle V = 0. Ce plan
médiateur est un plan d’antisymétrie de la distribution de charges, donc la ligne équi-
potentielle V = – V0 est symétrique de la ligne V = V0 par rapport au plan médiateur.

Sur les lignes équipotentielles, la distance au point O est maximale sur l’axe (Oz).
À l’inverse, cette distance s’annule lorsque q tend vers . Les lignes équipoten-
tielles sont tangentes au plan médiateur (xOy) du dipôle.

Cette dernière constatation n’a cependant pas de réalité physique : au voisinage de
l’origine, l’approximation dipolaire ne s’applique plus, et l’équipotentielle V �V0
passe « quelque part » entre le point O et la charge �q (doc. 9).

2.4.2. Représentation

Sur le document 9 sont représentées les traces de quelques équipotentielles du sys-
tème de deux charges dans un plan contenant l’axe (Oz) . Le document 10
reprend ce tracé en utilisant la formule du potentiel dipolaire. Nous constatons que
les deux figures sont semblables, sauf au voisinage du dipôle où l’approximation
dipolaire n’est pas valable : la différence entre le doublet de charges et l’entité
idéale apparaît nettement à courte distance.
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5. Dipôle électrostatique

Doc. 9. Équipotentielles d’un doublet (�q , �q) . Doc. 10. Équipotentielles d’un dipôle.

V < 0 V > 0

� q � q
p

axe du dipôle

V < 0 V > 0

Doc. 11. Visualisation du potentiel créé par deux charges
� q et �q (en noir V � 0 , en bleu V � 0).

Doc. 12. Visualisation du potentiel du dipôle dans l’espace
(en noir V � 0 , en bleu V � 0).

+ q

– q



2.4.3. Lignes de champ

2.4.3.1. Équation

Par définition, pour un déplacement élémentaire d r→ le long d’une ligne de champ,
nous aurons d r→ � E

→

�0
→

. Utilisant les coordonnées sphériques du champ et
l’expression dr→ �d r e→r �r d� e→� � r sin �d e→ d’un déplacement élémentaire,

r sin � d . E� � 0

nous obtenons : r sin � d . Er � 0

dr . E� – r d� . Er � 0 .

Hors les lignes de champ situées sur l’axe (Oz) (� �0 ou � �π), les deux
premières équations imposent  �cte. En effet, le système est de révolution autour
de l’axe (Oz) et les lignes de champ sont tracées dans les plans de symétrie passant
par cet axe.
La dernière équation s’explicite en sin � . dr �2r . cos � . d� , ce qui donne, par inté-
gration, l’équation des lignes de champ :

r � cte sin2 � .

2.4.3.2. Description qualitative et représentation

Les lignes de champ sont donc des courbes planes tracées dans des plans conte-
nant l’axe de révolution (Oz). Elles sont, en outre, symétriques par rapport au plan
médiateur (xOy), qui est un plan d’antisymétrie qu’elles coupent orthogonalement.
Enfin, sur les lignes de champ, la distance au point O est maximale sur le plan
médiateur. Les lignes de champ sont tangentes à l’axe (Oz). Cette dernière carac-
téristique géométrique est sans réalité physique car, au voisinage du point O, l’ap-
proximation dipolaire n’est plus vérifiée.

Sur les documents 13 et 14, on trouve les cartes des lignes de champ et des lignes
équipotentielles respectivement pour un doublet de deux charges opposées et pour
un dipôle. On vérifie que les deux cartes sont équivalentes lorsque la distance d’ob-
servation est grande devant la taille du dipôle.

� Pour s’entraîner : ex. 3.
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5. Dipôle électrostatique

{

Doc. 13. Équipotentielles et lignes de champ d’un doublet. Doc. 14. Équipotentielles et lignes de champ d’un dipôle.

axe de deux
charges – q et + q axe du dipôle



2.5. Généralisation
Le modèle du dipôle s’applique en fait à toute distribution de charges de charge
totale nulle.
Considérons un ensemble de N particules chargées, de position Pi et de charges qi

(i � (1...N)) telles que (doc. 15).

Notons ai
→ = OPi

→

le vecteur-position du point Pi .
OM
→

= r er
→ est le vecteur-position du point M et nous effectuons les calculs dans

l’approximation dipolaire : r >> ai pour tout i .

Le potentiel en un point M est :

soit : Pi M2 = r2 – 2rer
→. ai

→ + ai
2 et .

En se limitant au premier ordre en :

.

Si nous définissons le moment dipolaire de la distribution par :

,

alors, le potentiel en M se met sous la même forme que celui d’un doublet de charges :

.

Nous avons montré que le modèle élémentaire du doublet peut en fait s’appliquer à

toute distribution globalement neutre et de moment dipolaire non
nul.

Actions d’un champ électrostat ique3 sur un dipôle

Nous supposons dans un premier temps que le dipôle est rigide, c’est-à-dire que
la distance AB reste fixe et les charges constantes.

Les actions mécaniques exercées sur le dipôle seront caractérisées par leur résul-
tante F

→

et leur moment �
→

O calculé par rapport à un point O donné.

3.1. Champ uniforme
3.1.1. Force
Les forces exercées sur les charges �q et – q par le champ uniforme sont oppo-
sées. Par conséquent :

Le dipôle est donc soumis à un couple de forces.

La résultante des forces qui s’exercent sur un dipôle placé dans un champ
uniforme est nulle :

F
→

�0
→

.
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5. Dipôle électrostatique

Doc. 15. Distribution de charges.

M

O

ner

Pi

qi

La connaissance du moment en un point
et de la résultante des forces permet d’ex-
primer le moment en tout autre point,
car nous pouvons montrer que :

�
→

O’ � �
→

O � F
→ � OO’

→
.
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5. Dipôle électrostatique

Dans l’approximation dipolaire, les variations relatives du champ extérieur

appliqué sur un dipôle sont négligeables, de l’ordre de , rapport entre

la taille du dipôle et la distance caractéristique de variation du champ :

.

3.1.2. Moment

Calculons par exemple ce moment par rapport au point O , milieu des deux charges :

�
→

O � � (qE
→

0) � � (– qE
→

0) � qd
→

� E
→

0 .

Pour un couple (force résultante nulle), le moment est indépendant du point où il est
évalué. Il vaut donc en tout point : �

→

� p→ � E
→

0 .

En observant le document 16, nous pouvons résumer l’influence du champ appliqué
en disant que :

3.2. Cas d’un champ non uniforme
Soit une zone de l’espace où existe un champ électrique E

→

(M ) : plaçons dans ce champ
un dipôle, et cherchons l’action de ce champ.

Le dipôle de moment dipolaire p→ = q NP
→

est constitué d’une charge – q en N où existe
initialement un champ E

→

(N), et une charge + q en P où existe le champ E
→

(P). Appelons
O le centre du vecteur NP

→

de composantes NP
→

= (δx , δy, δz) (doc. 17). Les compo-
santes du moment dipolaire sont donc p→ : (qδx , qδy, qδz).

3.2.1. Approximation du calcul

Dans le cas d’actions subies par le dipôle, l’approximation dipolaire consiste à sup-
poser la taille d = �NP

→

� du dipôle faible devant la distance Lc , longueur caracté-
ristique de variation du champ électrostatique appliqué ; on supposera, par exemple,
que le champ électrostatique varie de �E

→

(M1)� à �E
→

(M2)� � 2 �E
→

(M1)� sur une dis-
tance de l’ordre de Lc (doc. 17).

Calculons ainsi un ordre de grandeur de :

;

la composante suivant x de δE
→

peut s’écrire :

.

La quantité étant de l’ordre de grandeur de , nous pouvons écrire :

Cherchons les effets de ce champ légèrement non uniforme à l’échelle du dipôle.

Dans un champ uniforme, le dipôle subit un couple de moment
�

æÆ

� pÆ � E
æÆ

0 qui tend à l’aligner parallèlement au champ appliqué dans
le même sens que celui-ci.

Doc. 17. Dans l’approximation dipo-
laire, d << Lc .

P
d

N
–q

+q
O

np
nE(P)

nE(N )

Lc

Doc. 16. Dipôle dans un champ uni-
forme.

– qE0

+ qE0

E0

+ q

– q

effet
d'alignement�

E0

p

�



3.2.2. Moment en O des forces s’exerçant sur le dipôle

Le moment �
→

O en O des forces s’exerçant sur le dipôle est égal à :

�
→

O

avec OP
→

= – ON
→

= , on obtient en notant δE
→

(P) = E
→

(P) – E
→

(O) et

δE
→

(N) = E
→

(N) – E
→

(O) :

�
→

O

Les calculs précédents ont montré que les normes de δE
→

(P) et δE
→

(N) sont négli-
geables devant celle de E

→

(O), donc nous écrivons :

3.2.3. Force

3.2.3.1. La force est-elle nulle ?

La force s’exerçant sur le dipôle est :

F
→

�– qE
→

(N) + qE
→

(P) = q 
E→(P) – E
→

(N)� .
Comme le champ est non uniforme, cette quantité est non nulle :

3.2.3.2. Mise en évidence de l’orientation de cette force

S’il n’y a pas de contraintes extérieures l’empêchant d’évoluer, le dipôle s’aligne
sur la ligne de champ passant par son centre (doc. 18) ( p→ et E

→

sont alors parallèles
et de même sens). Examinons les diverses situations où nous avons fait apparaître
les lignes de champs, avec les orientations du champ : le dipôle, orienté parallèle-
ment à E

→

et dans le même sens, est toujours attiré par les champs forts.

En présence d’un champ non uniforme, une force non nulle s’exerce sur le
dipôle.

Dans un champ non uniforme, le moment en O des forces s’exerçant sur
un dipôle est égal à :

�
æÆ

O � pÆ� E
æÆ

(O) .

Dans un champ électrique, le dipôle s’aligne sur la ligne de champ qui passe
par son centre.
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5. Dipôle électrostatique

P N

Cas b

x

champs
« faibles »

champs
« forts »

+q +q nF (N )

nE (N )nE (P)

nF(P)

n nF(P) + F(N )

PN

Cas a

x

champs
« faibles »

champs
« forts »

–q +qnF (N )

nE (N ) nE (P)

nF(P)

n nF(P) + F(N )

Doc. 18.
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5. Dipôle électrostatique

3.2.3.3. Cas général

La composante Fx (par exemple) de la force F
→

= q 
E→(P) – E
→

(N)� s’exerçant sur le
dipôle est donnée par :

.

Les composantes du moment dipolaire étant qδx, qδy et qδz , cela donne :

.

Nous avons vu dans l’Application 2 du chapitre 3 que :

on obtient donc :

relation qui s’écrit :

.

On a donc :

3.2.4. Interprétation

Retrouve-t-on l’orientation de la force précédente, c’est-à-dire que les dipôles, une
fois alignés sur le champ local, sont attirés par les champs forts ?
Examinons le document 19 sur lequel nous avons repris les quatre cas du document 18.
Les forces obéissent bien, en orientation, à l’expression précédente en considérant
les diverses orientations des champs et des gradients de champ.

Doc. 18. Sur ces divers documents a, b, c et d, le dipôle, orienté parallèlement à
E
→

et dans le même sens, est toujours attiré par les champs forts.

Doc. 19.

P N

Cas d

x

champs
« faibles »

champs
« forts »

–q+q nF (N )

nE (N )nE (P)

nF(P)

n nF(P) + F(N )

PN

Cas c

x

champs
« forts »

champs
« faibles »

–q +q

nF (N )

nE (N ) nE (P)

nF(P)

n nF(P) + F(N )

Cas b

x

champs « faibles »champs « forts »

nF

np n∂E—
∂x

N(–q)P(+q)

nE (P) nE (N )

Cas a

x

champs « faibles » champs « forts »

nF

np

n∂E—
∂x

N(–q) P(+q)

nE (P)nE (N )



� Pour s’entraîner : ex. 1.

3.3. Cas d’un dipôle non rigide
Si le dipôle n’est pas rigide, ses caractéristiques dépendent du champ appliqué.
Sous l’action du champ, les répartitions de charges (de l’atome ou de la molécule
par exemple) sont modifiées. Le moment dipolaire dépend du champ électrosta-
tique : p→ = p→(E

→

).

Une fois le champ établi, les caractéristiques du dipôle sont bien déterminées et
son moment dipolaire connu. Les calculs précédents sont donc applicables en consi-
dérant pour p→ , la valeur du moment dipolaire en présence du champ p→(E

→

) . Pour
le calcul de la force, nous pouvons raisonner avec ce moment dipolaire comme
s’il était rigide.

Dans un champ électrique uniforme ou non, un dipôle a tendance à s’ali-
gner sur la ligne de champ qui passe par son centre ; le dipôle, orienté
parallèlement au champ local et dans le même sens, est alors attiré par les
champs forts.

92

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

5. Dipôle électrostatique

Une expérience à expliquer

Un morceau de matière plastique, frotté sur un chiffon sec,
est approché d’un filet d’eau coulant d’un robinet. Le
résultat, assez spectaculaire, de cette expérience est
représenté sur le document 20.

Comment interpréter ce phénomène ?

La tige de plastique est électrisée, et ses charges créent
un champ électrostatique dont l’intensité croît lorsque
l’on s’approche du matériau chargé.

L’eau est constituée de molécules H2O polaires. Sous
l’effet du champ de la tige chargée, ces dipôles s’orien-
tent dans le sens du champ, et sont attirés alors vers les
zones de champ plus intense. Le filet d’eau dévie ainsi
nettement de la verticale pour se rapprocher de la tige
chargée.

Application 2

Doc. 20.

Doc. 19. Sur ces divers documents a, b, c et d, le dipôle orienté parallèlement à
E
→

et dans le même sens est toujours attiré par les champs forts, conforme à l’ex-

pression de la force en .

Cas d

x

champs ˙ faibles ¨ champs ˙ forts ¨

nF

np
n∂E
∂x

N(—q)P(+q)

nE (P) nE (N )

Cas c

x

champs ˙ faibles ¨champs ˙ forts ¨

nF

npn∂E
∂x

N(—q) P(+q)

nE (P)nE (N )



Remarque : La matière, sous l’action d’un champ appliqué, acquiert généralement
une polarisation (densité volumique de dipôles) de même sens que le champ appli-
qué, de sorte que la matière dévie vers les zones de champ fort. (Cf. l’Application 2
précédente.)

� Pour s’entraîner : ex. 4.

Énergie potentie l le d’ interact ion4
4.1. Énergie potentielle d’interaction entre un dipôle

rigide et un champ extérieur
Dans une distribution de charges ponctuelles, si les interactions entre les charges
sont neutralisées par des contraintes, l’énergie potentielle de la distribution dans
un champ électrostatique extérieur est la somme des énergies potentielles de cha-
cune des charges de la distribution.

Dans le cas d’un dipôle rigide, l’interaction électrostatique entre les deux charges
est neutralisée par la structure du dipôle qui maintient ces deux charges à une dis-
tance d constante.

L’énergie potentielle d’un tel dipôle est donc due uniquement à l’interaction entre
les deux charges � q et le champ extérieur.

Nous avons vu (chapitre 2) que l’énergie potentielle d’une charge q dans un champ
créant le potentiel V est : %p = qV . Cela étant, l’énergie potentielle du dipôle rigide
est :

.

Comme nous sommes fondés à écrire :

il vient :

L’énergie potentielle d’interaction entre un dipôle rigide et le champ appli-
qué est :

.

Notons que le travail fournit par un opérateur lors d’un déplacement élémentaire
du dipôle rigide s’écrit :

�Wop �d�P � d (– p
→

. E
→

) � – p
→

. dE
→

– dp
→

. E
→

.

Il serait possible, à partir de cette expression, de retrouver la force et le moment
s’exerçant sur un dipôle.

Remarque : Dipôle rigide signifie p
→

 � cte . Nous n’aurons p
→

� cte
→

que si le
dipôle subit une translation.
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5. Dipôle électrostatique
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5. Dipôle électrostatique

C Q F R

● LE MOMENT DIPOLAIRE
Un objet non chargé, mais polarisé, crée un potentiel et un champ analogues (en première approximation) à
ceux d’un doublet de charges de moment dipolaire p→ non nul (q > 0) : p→= q d

→

et d
→

= A–A+p .

● POTENTIEL ET CHAMP DU DIPÔLE
• En utilisant l’expression du moment dipolaire, le potentiel électrostatique créé par un dipôle placé au

point O, à l’ordre le plus bas en puissances de , est : .

Action exercée par un fil infini
chargé sur un dipôle

Soit un dipôle placé dans le champ électrostatique d’un
fil rectiligne infini portant la densité linéique l ; le dipôle
est en un point M, à une distance r du fil, orienté radi-
calement dans un plan perpendiculaire au fil.

1) Déterminer la résultante F
→

et le moment G(M)
→

en M
des actions exercées par le fil sur le dipôle.

2) Calculer l’énergie potentielle %p du dipôle.

3) Quelle relation lie F
→

et %p .

1) Rappelons que le champ créé par le fil rectiligne infini
est radial, orienté suivant er

→, et varie en ; il est donné
par l’expression suivante :

.

Le moment résultant se calcule immédiatement : comme
le dipôle est aligné parallèlement au champ, le moment
G(M)
→

des forces s’exerçant sur le dipôle est nul.

Pour le calcul de la résultante F
→

des forces appliquées,
nous pouvons utiliser la méthode vue au § 3.2.3. : soit
d la distance entre les deux charges – q et + q de ce dipôle
de moment p = qd ; la résultante des forces s’exerçant
sur les deux charges du dipôle est :

.

Avec ON = r – , OP = r + , et en se plaçant dans

l’approximation dipolaire, on obtient :

.

Cette force orientée suivant – er
→ attire le dipôle vers

l’axe (Oz) où existent les champs intenses.

2) L’énergie potentielle du dipôle est donnée par l’ex-
pression , ce qui donne :

.

3) Lors d’une translation élémentaire dM
→

= dr er
→ du

dipôle sur la ligne de champ, la variation d’énergie poten-
tielle d�p est opposée au travail de la force F

→

, ce qui
donne : d�p = – FF

→

. dr er
→, soit :

,

ce qui est bien vérifié.

xz

p

er

d
M

y

fil infini parallèle à Oz portant
une densité linéique de charge l

N(–q)

P(+q)

Application 3

Doc. 21.
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5. Dipôle électrostatique

• L’expression du champ du dipôle est : .

• Sous forme intrinsèque, le champ du dipôle est :

ou encore : .

● INTERACTION D’UN DIPÔLE AVEC UN CHAMP APPLIQUÉ
• La résultante des forces qui s’exercent sur un dipôle placé dans un champ uniforme est nulle : F

→

= 0
→

.

• Le moment des forces s’exerçant sur un dipôle soumis en M à un champ appliqué E
→

(M) pratiquement
uniforme est : �

→

(M) � p→1 ∧ E
→

(M) .

• Dans un champ non uniforme, le dipôle subit principalement un moment qui tend à l’aligner parallèle-
ment au champ appliqué, dans le même sens que celui-ci. Une fois aligné, le dipôle subit encore une force
qui tend à le déplacer vers les zones de champ intense.

• L’énergie potentielle d’interaction entre un dipôle rigide et le champ appliqué est : �P � – p
→

. E
→

.

Avez-vous retenu l’essentiel ?

✔ Définir le moment dipolaire pn d’une distribution de charges globalement neutre et en donner l’unité.
✔ Définir l’approximation dipolaire.
✔ Calculer le potentiel V(M) créé par un dipôle se plaçant dans l’approximation dipolaire.
✔ Établir l’expression du champ E

→

(M) créé par un dipôle, dans l’approximation dipolaire.
✔ Démontrer que dans un champ uniforme E0

→

, un dipôle (rigide ou pas) est soumis à un couple �
→

dont on déter-
minera le moment.

✔ Établir l’expression de la force F
→

appliquée à un dipôle soumis à un champ légèrement non uniforme.
✔ Établir l’expression de l’énergie potentielle �P d’un dipôle rigide placé dans un champ E

→

.

Du tac au tac (Vrai ou faux)

Contrôle rapide

1. Toute distribution de charges dont la charge
totale est nulle se comporte comme un dipôle.
❑ Vrai ❑ Faux

2. À grande distance, le potentiel d’une distribu-

tion dipolaire est en parce que la charge totale

de la distribution est nulle.
❑ Vrai ❑ Faux

3. Dans un champ uniforme, le moment résultant
G
→

des forces appliquées à un dipôle est indé-

pendant du point où on l’évalue, parce que la
résultante F

→

des forces appliquées est nulle.
❑ Vrai ❑ Faux

4. Dans un champ légèrement non uniforme, le
dipôle n’est encore soumis qu’à un couple.
❑ Vrai ❑ Faux

5. Un dipôle est rigide lorsque son moment dipo-
laire est constant : p

→

= cte
→

.
❑ Vrai ❑ Faux

� Solution, page 97.

C Q F R
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Force subie par le dipôle
dans un cas unidimensionnel

Un dipôle, placé en un point de coordonnées cartésiennes
(x , y , z), est soumis au champ E

→

�E(x) e→x . Calculer à
l’aide du modèle du doublet puis la force subie par le dipôle
lorsque :

1) p→ est parallèle à e→x et de même sens que e→x ;

2) p→ est perpendiculaire à e→x .

L’atome de Thomson, modèle
de polarisation linéaire

Dans ce modèle, un atome d’hydrogène est représenté par un
noyau de charge + e occupant une boule de rayon R à l’in-
térieur de laquelle la charge e est uniformément répartie.
L’électron, de charge � e , est susceptible d’évoluer à l’inté-
rieur de la boule chargée positivement.

1) Quelle est la force subie par l’électron évoluant à l’intérieur
de la sphère de rayon R ? Quelle est sa position d’équilibre ?
2) Quelle est la nature de la trajectoire de l’électron, supposée
interne à la boule ? Quelle est la valeur du moment dipolaire
moyen de cet atome ?
3) Un champ E

→

0 est appliqué à cet atome, le noyau étant sup-
posé immobile. Si l’électron reste encore à l’intérieur de la
sphère de rayon R, quelles sont les modifications apportées
aux résultats précédents par l’existence du champ appliqué ?
Montrer en particulier que le moment dipolaire moyen est de
la forme � p→ � �a � 0 E

→

0 , où le facteur a est appelé
polarisabilité de l’atome.
Quelle est la dimension de a ? Son ordre de grandeur ?
4) Pour quelle valeur du champ appliqué aura-t-on l’ionisa-
tion de cet atome ?

Champ et potentiel créés par un sphère

Une sphère de centre O et de
rayon R porte une charge sur-
facique � ��0 cos � .

Déterminer le champ et le
potentiel créé par cette
distribution à l’intérieur et à
l’extérieur de la sphère (on
prendra V �0 en O).

Commenter le comportement
du champ en r �R .

Indication : On utilisera l’équivalence entre cette distribution
et la superposition de deux distributions de charges corres-
pondant à deux boules chargées uniformément �� et �� ,
de rayon R , de centres O1 et O2 sur l’axe (Oz) et d’abscisses
�a et �a respectivement, à la limite a tend vers 0 avec
� a �cte � � 0 . Cette équivalence a été vue exercice 9
chapitre 4.

Forces de Van der Waals

Une molécule non polarisable de moment électrique p0 = p0 ex
est placée en O. En un point M de l’axe (Ox) se trouve une
molécule polarisable de polarisabilité a et de moment élec-
trique permanent nul. Dans le champ E

→

(M) créé par la molé-
cule placée en O, la molécule polarisable acquiert un moment
dipolaire induit pi

→ = a E
→

(M).

Calculer la force F
→

qui s’exerce sur la molécule polarisable.

Champ et potentiel d’un quadrupôle

Calculer le premier terme non nul du potentiel créé à grande
distance par la distribution représentée sur le schéma.

Champ de quatre charges

Quatre charges sont disposées dans le plan (xOy) :
q en (a , 0) et en (� a , 0) ; � q en (0 , a) et en (0 , � a).

Calculer le champ créé par la distribution de charges pour
r �� a , puis pour r �� a , dans le plan (xOy) .
(On se limitera aux premiers termes non nuls des dévelop-
pements limités.)

Interaction d’une spire et d’un dipôle

Le cerceau, de rayon R, porte la charge linéique � uniforme.

1) Calculer le champ électrostatique créé par le cerceau sur
son axe, ainsi qu’au voisinage de celui-ci.

Exercices

z

= 0 cos

O

R

� ��

�

z
2q

– q– q

2
d

2
d

r

M

O
�
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5. Dipôle électrostatique

1) Utilisant le modèle du doublet, nous avons :

F
→

�– qE ex
→�qE ex

→� qd ex
→ .

Expression de la forme trouvée dans le cours.

Lorsque le dipôle est dans le même sens que le champ, nous pouvons constater que
le dipôle est attiré dans le sens où la norme du champ augmente, donc il est attiré par
les champs forts.

2) Lorsque le dipôle est perpendiculaire au champ, par exemple p→ �p . e→y , le cal-
cul précédent donne immédiatement F

→

�0 .

1) La charge e , répartie uniformément à l’intérieur de la sphère, correspond à

la charge volumique �� .

Le champ en un point M (OM
→

�r
→) intérieur à la sphère vaut

E
→

� r
→

� r
→ .

L’électron est donc soumis à la force centrale de rappel linéaire vers le point O :

f
→

� r
→.

Elle est nulle en O, position d’équilibre stable de l’électron.

2) L’équation du mouvement de l’électron à l’intérieur de la sphère est :

m r
→
..

� r
→

�0
→

.

Pour des conditions initiales r
→

0 et v→0 données, l’équation du mouvement est

r
→(t) �r

→

0 cos ! t � sin ! t , où ! � . La trajectoire est une

ellipse de centre O .
Le moment dipolaire instantané de l’atome est p

→
��er

→ . Sa valeur moyenne est nulle.

3) Le champ E
→

0 exerce la force supplémentaire � e E
→

0 sur l’électron. S’il reste à
l’intérieur de la sphère, l’électron aura la même trajectoire, décalée d’un vecteur

constant : l’ellipse sera centrée en � r
→

� � E
→

0 . La polarisabilité de

l’atome s’en déduit a �4πR 3 , homogène à un volume, et en ordre de grandeur de

R3 avec R �0,1 nm .

4) La force de rappel est maximale pour r �R , de norme fmax � .

(À l’extérieur de la sphère, elle décroît comme à partir de cette valeur.) Elle ne

peut plus compenser la force exercée par le champ E
→

0 lorsque la norme de celui-ci

dépasse E 0 max� . Il y a alors ionisation de l’atome.

Pour R � 0,1 nm , ce champ est de l’ordre de 1011 V . m– 1 (considérable, le champ
disruptif de l’air sec vaut environ 3 . 106 V . m– 1). Les champs que nous appliquons
aux atomes sont généralement beaucoup plus faibles, et n’ont alors que des effets de
faible perturbation sur l’atome, donc linéaires en première approximation. Ce modèle
d’atome, bien qu’assez étrange, a l’agréable propriété de rendre compte d’une pola-
risation linéaire (conforme à l’expérience) et donne un ordre de grandeur de la pola-
risabilité en bon accord avec les valeurs usuelles pour la polarisation électronique.

2) Quelles sont les actions mécaniques exercées par la spire
sur le dipôle placé en M ?
On proposera trois méthodes pour effectuer ce calcul.

3) On prend désormais a �0 . Le dipôle peut coulisser sans
frottement sur l’axe horizontal. Déterminer la ou les positions
d’équilibre. Discuter leur stabilité et calculer éventuellement

la période des petites oscillations du dipôle de masse m le
long de l’axe.

Calcul de la force instantanée
d’interaction entre deux dipôles

Soit un dipôle p1
→ au point O et un dipôle p 2

→ au point
M (OM

→

�r→). Le dipôle p1
→ crée le champ électrostatique

E 1
→

, et le dipôle p 2
→ le champ électrostatique E 2

→

.

1) Quelle est l’énergie potentielle d’interaction existant entre
ces deux dipôles ?

2) Quelle est la force subie par p 2
→ de la part de p1

→ ?

z
�p

MO

spire chargée

Corrigés
Solution du tac au tac, p. 95.
1. Vrai si pn π 0l
2. Vrai
3. Vrai

4. Faux
5. Faux
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À l’intérieur de la sphère, les deux distributions de charges créent les champs :

E 1 (M)
→

�� O1M
→

et E 2 (M)
→

�� O2M
→

,

soit au total E (M)
→

�� O 1 O 2
→

�� e
→

z .

À la limite quand a tend vers 0, nous obtenons :

E
→

�� e
→

z uniforme à l’intérieur de la sphère.

Le potentiel s’en déduit V (M) � z � r cos � .

À l’extérieur de la sphère, nous savons que les deux boules chargées créent le même

champ que si toutes leurs charges � q �� π R 3 � étaient concentrées en O 1

et O 2 . À la limite quand a tend vers 0 , le champ vu à une distance supérieure à R du

point O correspond au champ d’un dipôle placé en O et de moment dipôlaire :

p
→

�q O 1 O 2
→

� π R 3 � a e
→

z � π R 3 � 0 e
→

z .

Le calcul du potentiel puis celui du champ a été effectué dans le cours et nous donne :

.

Nous vérifions que le potentiel est continu sur la sphère, que la composante tangentielle

du champ est continue (E�) , et que la discontinuité de la composante normale (Er)

est bien égale à n→int → ext .

Sur les simulations suivantes, nous visualisons les équipotentielles et les lignes de

champ ainsi que l’évolution du potentiel dans un plan contenant l’axe (Oz).

La molécule placée en O crée le champ : E
→

(M) = ex
→= E(x) ex

→.

Ce champ induit, dans la molécule polarisable, un moment électrique en déplaçant le

barycentre des charges négatives (– q) en . Le moment induit résultant est
alors : pi

→= a E (M)
→

= q M .
→

M+ .

Dans l’hypothèse a << x , nous sommes fondés à écrire :

ce qui donne pour l’expression de la force exercée sur la molécule polarisable :

.

Comme , il vient après simplification :

.

C’est une force attractive en . De telles forces s’exercent entre molécules et sont

appelées forces de Van der Waals.

La charge totale est nulle et le moment dipolaire p
→ est aussi nul. Il faudra

calculer le développement limité du potentiel jusqu’à l’ordre trois en (au moins !).

V ( r
→) �

�

≈

Le premier terme non nul est de type quadrupolaire. Les simulations suivantes
présentent l’allure des lignes de champ et des équipotentielles, ainsi que l’allure du
potentiel. Nous visualisons bien les équipotentielles :

V �0 , pour � �� et � �� .

Corrigés

y

z

Lignes de champ et équipotentielles d’une sphère chargée :
� ��0 cos � , avec �0 � 0 .

z

y

Évolution du potentiel créé par une sphère chargée � ��0 cos � (�0 � 0) . Nous
visualisons la surface plane inclinée correspondant à la zone de champ uniforme.
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5. Dipôle électrostatique

Le potentiel créé en un point M de coordonnées polaires (r, �) dans le plan

(xOy) est, à une constante près :

À une distance r de l’origine grande devant a, nous devons mener le développement
du potentiel au moins jusqu’à l’ordre deux, car la charge et le moment dipolaire de
cette distribution sont nuls :

et le champ électrostatique vaut :

E
→

� [3 (2 cos2 � �1) e
→

r �2 sin2 � .e→� ] .

À distance r faible devant a, le développement du potentiel est identique au précé-
dent, en intervertissant a et r ,

V �

et le champ est : E
→

� [�2 (2 cos2 � �1) e
→

r �2 sin2 � .e→� ] .

Les simulations précédentes présentent l’allure des lignes de champ et des équipo-
tentielles, ainsi que l’allure du potentiel. Nous visualisons bien les équipotentielles

V � 0 pour � �� et � �� .

1) Sur l’axe, le champ du cerceau est porté par l’axe (Oz) par raison de symé-

trie. En n’oubliant pas de projeter les champs élémentaires sur l’axe (Oz), on trouve
sans difficulté :

z

Lignes de champ et équipotentielles vues par le système de charges (�q , 2 q , �q) .

Évolution du potentiel créé par le système de charges (�q,2q,�q) .

Ce potentiel tend très vite vers zéro �terme en � .

x

y

Lignes de champ et équipotentielles créés par les quatre charges.

Évolution du potentiel créé par quatre charges. Le potentiel tend vite vers zéro

�termes en � .
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ENaxe = ,

dont l’allure des variations apparaît sur le schéma ci-après.

Variations du champ sur l’axe.

Le champ passe par deux extrema pour :

= ± , où = 0 .

Au voisinage de l’axe, nous aurons à l’ordre un en r (cf. Application 1, chapitre 4) :

EN (r, z) = Eaxe (z) enz – + …

=

2) En première approximation, le dipôle subit un couple de moment :

GM = pn ∧ EN = – pEaxe (z) sin a eam

qui tend à l’aligner sur l’axe (Oz).

Il est toujours possible de revenir au modèle du doublet (pn = qdN) pour calculer la force
subie par le dipôle :

FN = q

– q ,

ce qui conduit au résultat :

FN = p .

3) Pour un dipôle pn = p ezm , la force subie est (dans le cas où a = 0) :

FN = ;

s’annule pour deux valeurs de z :

z = + et z = – : il existe donc deux positions d’équilibre.

Exprimons l’énergie potentielle, �P du dipôle : �p = – pn . EM = – p Eaxe (z) : la posi-
tion d’équilibre stable correspond à un minimum d’énergie potentielle, donc à un

maximum de Eaxe(z), c’est-à-dire à z = + ; z = – est une position d’équilibre
instable.

Étudions le mouvement du dipôle au voisinage de z = et posons z = + ez .

Pour un dipôle de masse m coulissant sur l’axe (Oz) soumis uniquement à la force
précédente selon (Oz), l’équation du mouvement linéarisée au voisinage de la posi-
tion d’équilibre est :

m

C’est une équation d’oscillateur harmonique, cette position d’équilibre est stable.

L’autre position est en revanche instable.

1) L’énergie potentielle d’interaction entre les deux dipôles est donnée par la

formule :
� P ��p 1

→. E 2
→

��p 2
→. E 1

→

.

Le champ créé par le dipôle p 1
→ en r

→ est :

E 1
→

( r
→) � .

L’énergie potentielle d’interaction est donc égale à :

�p 2
→. E 1

→

� .

Remarquons que cette relation est bien symétrique en p 1 ↔ p 2 .

2) Calculons la force exercée par le dipôle p 1
→ sur le dipôle p 2

→ . Sachant que :

grad
→

et grad
→

( p
→. r

→) �p
→

,

la force exercée par le premier dipôle sur le second s’en déduit :

F
→

�� grad
→

�

� (� 3 ( p 1
→. r

→) (p 2
→. r

→) �r 2 ( p 1
→.p 2

→)�
� .

La force instantanée est donc en .

Eaxe(z)

z
—
R

1—
2

1—
2

–
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Distributions
de courants 6

En électrostatique, les charges sont immobiles.
Leur mise en mouvement donne

naissance à des courants électriques,
à l’origine de l’apparition du champ magnétique.

Nous décrirons ici les distributions de courants,
leurs modélisations et leurs symétries remarquables

comme nous l’avons fait au chapitre 1
pour les distributions de charges.

O B J E C T I F S

■ Décrire les distributions de courants.
■ Reconnaître leurs propriétés de symétrie.

P R É R E Q U I S

■ Distributions de charges.
■ Symétries remarquables d’un champ de vec-
teurs (champ électrostatique).
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6. Distributions de courants

Mouvements de charges1
1.1. Courant électrique
Étant donné un référentiel 5, on appelle courant électrique tout mouvement d’ensemble
(mouvement ordonné) de particules chargées dans ce référentiel.

1.2. Intensité électrique
Considérons une surface S liée au référentiel 5 , munie en tout point M d’une nor-
male orientée par un vecteur unitaire n→ (doc. 1). Notons �Qm la charge mobile tra-
versant cette surface entre les instants t et t �� t , comptée positivement dans le
sens choisi par l’orientation de S.

Remarque

L’intervalle de temps élémentaire � t est infinitésimal si �� 1 , T étant une

durée caractéristique du phénomène étudié (par exemple la période pour un courant
sinusoïdal).

1.3. Conservation de la charge électrique

1.3.1. Cas d’un système fermé

Un système fermé est un système qui n’échange pas de matière avec le milieu qui
l’entoure.

Pour un tel système, l’expérience montre que la charge reste constante.

1.3.2. Cas d’un système ouvert

Un système ouvert peut échanger de la matière avec le milieu qui l’entoure. Il est
donc susceptible de recevoir ou de céder des charges électriques.

Considérons un tel système occupant un volume V. La conservation de la charge
électrique impose que l’évolution de la charge contenue dans V soit due uniquement
aux transferts de charges entre le système et l’extérieur, donc qu’elle soit liée aux
courants électriques entrant ou sortant à travers la surface fermée S délimitant son
volume V .

Pour le cas représenté sur le document 2, en notant QV la charge contenue dans le
volume V, la conservation de la charge se traduit par :

�Q V �(I1 � I2 �I3 �I4) �t .

1.4. Divers courants électriques
Le classement suivant est traditionnel.

L’intensité I (S, t) du courant électrique à travers une surface S est liée à
la charge �Q m qui traverse S entre les instants t et t + � t par la relation
� Q m �I (S, t) � t .

L’intensité, grandeur électrique, dépend de l’orientation de S .

Elle s’exprime en ampère (symbole : A), unité de base du Système
International d’unités.

Doc. 1. Surface S orientée par un vec-
teur unitaire n→ .

n

S

Doc. 2. L’évolution �QV de la charge
contenue dans le volume V pendant le
temps δ t est égale à :

�QV �(I1 � I2 �I3 �I4) �t .

(S) I1

I2
I3

I4

V



1.4.1. Les courants de conduction

Ils sont associés au déplacement d’ensemble d’électrons dans les métaux, d’ions
dans les solutions d’électrolytes, d’électrons ou de lacunes électroniques (« trous »)
dans les semi-conducteurs.

Pour un conducteur métallique fixe dans le référentiel d’étude 5, ce sont les élec-
trons dits de conduction qui autorisent l’existence d’un courant électrique.

Leur densité particulaire n e (nombre par unité de volume) est élevée, de l’ordre
de 10 29 m�3 . Un volume mésoscopique d� , bien que macroscopiquement très
petit, contient un nombre n e d� important d’électrons de conduction.

Les électrons de conduction, indicés k, sont animés de vitesses Vk
→

. Pour le volume

d� , nous définirons la vitesse d’ensemble des porteurs par v→ � 	
k

Vk
→

.

Cette vitesse est une grandeur nivelée, ou valeur moyenne spatiale.

Les vitesses Vk
→

, de l’ordre de 10 6 m . s�1 , résultent d’une agitation désordonnée
à laquelle se superpose un mouvement d’ensemble à vitesse v→ (dû par exemple à
l’application d’un champ électrique au conducteur). Leur valeur est sans commune
mesure avec l’ordre de grandeur de la vitesse d’ensemble des électrons de conduction
(cf. application 1). Leur partie aléatoire Vk

→

�v→ évolue très rapidement aux échelles
de temps T caractérisant les expériences usuelles :

Le courant électrique de conduction résulte d’un mouvement d’ensemble
(ou de dérive) des porteurs de charges dans un support matériel fixe.

103

6. Distributions de courants

Vitesse d’ensemble des porteurs
de charges dans un conducteur

Un fil de cuivre cylindrique et plein, de rayon r�1 mm ,
est parcouru par un courant statique (indépendant du
temps) d’intensité I � 5 A .
Il y a en moyenne un électron de conduction par atome
de cuivre.
Évaluer la vitesse d’ensemble, supposée uniforme, des
charges mobiles dans ce métal.

Données :

Masse volumique � �8,9 . 10 3 kg . m�3 .
Masse molaire M � 63,6 g .

La densité particulaire des électrons de conduction

est n e �NA (NA � 6,02 .1023 mol� 1 , nombre

d’Avogadro). A.N. : n e � 8,4 .1028 m� 3 .

La charge �Qm traversant une section S
→

�Se→z du fil
pendant l’intervalle de temps �t (doc. 3) est contenue dans
un tronçon cylindrique de section et de longueur v � t ,
de volume d� � S v � t � π r 2 v � t .

Nous en déduisons �Qm � � n e e π r 2 v � t .

Le courant électrique est donc I �� n e eπ r 2 v .

La vitesse d’ensemble des porteurs de charges mobiles est
de sens opposé à celle du courant et sa norme est :

� 1,2 .10�4 m .s�1 .

Cette vitesse d’ensemble, de l’ordre de 0,1 mm . s�1 , est
très nettement inférieure à la vitesse |VkM| de chaque
électron mobile.
La vitesse calculée correspond à la valeur moyenne spa-
tiale des vitesses Vko .

Application 1

Doc. 3.

v

v δt

z
,

z

r
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1.4.2. Les courants de convection

De tels courants sont obtenus par déplacement dans un référentiel donné d’un
support matériel portant des charges. C’est le cas d’un disque chargé qui tourne
autour de son axe, mouvement donnant naissance à des courants annulaires (ou
orthoradiaux).

1.4.3. Les courants particulaires

À un faisceau de particules chargées (électrons ou ions dans les tubes à vide) est
associé un courant électrique dit particulaire.

Distr ibutions de courants2
2.1. Courants filiformes

2.1.1. Conducteur filiforme

Un fil conducteur de faible section à l’échelle macroscopique peut être assimilé à
une courbe � (sans épaisseur). Dans cette modélisation, la seule information à
laquelle nous avons accès est la quantité de charge passant au point M par unité
de temps, c’est-à-dire à l’intensité i (M, t) (doc. 4).

L’intensité i(M, t) du courant dépend en général à la fois du point M et du temps.
La flèche tracée sur le schéma indique l’orientation du vecteur unitaire normal à
une section du fil. Ainsi, i (M, t) > 0 correspond à un écoulement de charges posi-
tives dans le sens de la flèche ou à un écoulement de charges négatives dans le sens
opposé.

2.1.2. Cas du régime statique ou indépendant du temps

Considérons le fil représenté sur le document 4. Pendant la durée élémentaire d t
la variation élémentaire de la charge électrique q12 comprise entre M1 et M2 est :

dq12 = δqentrant en M1
– δqsortant en M2

= i (M1)d t – i (M2) d t soit :

= i (M1) – i (M2)

En régime permanent, toutes les grandeurs sont constantes, et en particulier q12 ,
donc :

= 0 soit : i (M1) = i (M2) .

Imaginons maintenant un fil AB non fermé. La charge ne pouvant s’accumuler ni
en A ni en B , nous pouvons affirmer : i (A) = i (B) = 0.

Comme, en régime permanent, le courant est uniforme dans le fil, ce courant est
nul partout. Nous pouvons donc affirmer que :

En régime permanent, un courant filiforme ne peut exister que sur un cir-
cuit fermé.

En régime permanent, l’intensité d’un courant filiforme a la même valeur
en tout point d’un fil sans dérivation.
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6. Distributions de courants

Doc. 4. Courant filiforme.

M1 �
M2

�

i (M1, t )
i (M2, t )



Le modèle de courant filiforme ne donne aucun renseignement sur la façon dont
les mouvements de charges se répartissent à l’intérieur du fil. Il peut être néces-
saire de disposer d’une description plus fine : c’est le modèle du courant volu-
mique.

Par ailleurs, il arrive que les fils d’un circuit soient jointifs et se répartissent sur
une surface (fils d’un bobinage de solénoïde, par exemple). Les effets de ces cou-
rants seront plus faciles à étudier en modélisant le circuit par une nappe de cou-
rants surfaciques.

Les deux paragraphes qui suivent introduisent des notions qui, bien que n’étant
pas au programme de première année, éclairent la notion de courant électrique.

2.2. Courants volumiques

2.2.1. Vecteur densité volumique de courants

Considérons un ensemble de particules de charges q , de densité particulaire n et
ayant un mouvement d’ensemble à vitesse v→ .

Nous appellerons densité volumique de charges mobiles la quantité :

�m �nq .

Remarque

�m �nq désigne la densité volumique de charges mobiles (en C . m�3), à ne pas
confondre avec � , densité totale de charges, qui prend également en compte les
charges qualifiées de fixes (par exemple les ions formant le réseau cristallin dans
un conducteur métallique).

Pour un tel mouvement, la charge mobile � Q m traversant entre les instants t et
t �� t la surface élémentaire dS

→

, représentée sur le document 5, est contenue à la
date t dans le cylindre oblique de hauteur v � t et de volume d � �v→� t . d S

→

. Par
conséquent :

�Q m � nqd� � nqv→� t . dS
→

.

L’intensité d I traversant l’élément de surface dS
→

est :

d I � nqv→. dS
→

� j
→

. dS
→

.

Lorsqu’il existe différents types de porteurs de charges (électrolyte par exemple),
les contributions au courant électrique de chaque type, indicé a, s’ajoutent. Le
vecteur densité résultant est alors :

j
→

�	
a

j
→

a � 	
a

na qa v→a � 	
a

� ma v→a .

L’intensité du courant électrique traversant une surface S est égale au flux
du vecteur densité volumique de courants j

→

(r→, t) à travers cette surface :

I (S, t) ���
S

j
→

(r→, t) . dS
→

.

Le vecteur densité volumique de courant associé à un mouvement d’en-
semble à vitesse v→ est :

j
→

�nqv→ � � m v→ .

Ce vecteur, dont la valeur s’exprime en A . m�2 , est par construction une
grandeur nivelée.
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6. Distributions de courants

Doc. 5. Les particules qui traversent
la surface dS pendant le temps δ t
sont situées dans un cylindre de base
dS et de génératrice vnδ t .

dS

j

v δt



2.2.2. Lignes et tubes de courant

2.1.3. Flux conservatif de j
→

en régime permanent statique

En régime permanent, la charge contenue à l’intérieur d’une surface fermée S (fixe)
n’évolue pas. L’intensité traversant cette surface est donc nulle, c’est-à-dire que le
flux sortant de j

→

à travers S est nul.

Appliquons ce résultat à une surface fermée obtenue par la réunion de deux sections
S 1 et S 2 d’un même tube de courant et de la surface � du tube joignant ces
surfaces (doc. 7).

Comme il n’y a aucun mouvement de charges à travers la surface � ( j
→

.n→ �0) ,

l’intensité traversant la surface S 1 �I1 ��� j
→

. d S
→

1� est égale à celle traversant

S2 �I2 ��� j
→

.dS
→

2� .

2.3. Courants surfaciques

2.3.1. Vecteur densité surfacique de courants

Lorsque la distribution de courants se trouve confinée dans une écorce d’épaisseur
h faible à l’échelle macroscopique, nous pouvons assimiler celle-ci à une distribu-
tion surfacique de courants.

Considérons une section élémentaire dS �hd	 (doc. 8) de l’écorce, orientée selon
le vecteur unitaire u→ , d S

→

�d S .u→ . Pour h faible, le vecteur j
→

est dans le plan
tangent à la nappe et le courant traversant dS est d I � j

→

. dS
→

� j
→

h u→ d	 .

Pour une épaisseur h très faible, nous envisagerons la représentation limite « h tend
vers zéro » à courant d I constant pour un élément de longueur d l donné. Le
produit j

→

. h , maintenu constant lors de cette opération, sera noté j
→

S , vecteur
densité surfacique de courants. Sa norme se mesure en A . m�1 .

2.3.2. Densité surfacique de courant associée à une distribution
de courants filiformes en surface

Considérons le circuit filiforme hélicoïdal d’un bobinage « simple couche » d’un
solénoïde parcouru par un courant I (doc. 9).

Lorsque les courants circulent sur des nappes surfaciques, le vecteur den-
sité surfacique de courants j

→

S associé est défini par :

d I � j
→

S . u
→

d l ,

dI étant l’intensité traversant l’élément de longueur d l tracé sur la surface.

Le vecteur j
→

S , dont la valeur s’exprime en A . m–1, est par construction
une grandeur nivelée.

En régime permanent statique (indépendant du temps), le vecteur j
→

a un
flux conservatif : le courant électrique est le même à travers toutes les sec-
tions d’un même tube de courant.

Une ligne de courant est une ligne en tout point de laquelle le vecteur den-
sité volumique de courant est tangent.

Un tube de courant est un ensemble de lignes de courant s’appuyant sur un
contour C (doc. 6).
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6. Distributions de courants

Doc. 6. Lignes et tube de courant s’ap-
puyant sur un contour C.

contour C

tube de courant

lignes de courant

Doc. 7. Tube de courant.

tube de courant

2e section
(S2)

1re section
(S1)

dS1

dS2

�( )

n

Doc. 8a. Écorce orientée pour h faible.

dS

u
j

h

dl

(S)�

Doc. 8b. h très faible.

u
jS

dl

(S)�



Si les fils sont très rapprochés les uns des autres (ou jointifs) il est avantageux de
modéliser ce circuit hélicoïdal par un empilement de courants circulaires placés les
uns à côté des autres.

Notons n = le nombre de circuits circulaires par unité de longueur le long de

l’axe (Oz ). Nous pouvons encore pousser la modélisation en effectuant une opé-
ration de nivelage, substituant à l’empilement des courants circulaires, un courant
surfacique de densité :

j
→

S = nI e
→

q .

Cette façon de procéder a l’avantage considérable de simplifier les calculs des gran-
deurs liées au circuit hélicoïdal.

Cette situation se retrouve pour de nombreux circuits filiformes répartis en surface
et leur modélisation par une distribution de courants surfacique apporte souvent
une grande commodité de calcul.

Symétries des distributions de courants3
3.1. Symétries usuelles
Nous allons étudier l’influence d’opérations simples (déplacements) sur une
distribution de courants $ , comme nous l’avions fait pour les distributions de
charges vues en électrostatique.

3.1.1. Symétrie plane

Nous considérons une distribution de courants telle que le plan (xOy) noté � , soit
un plan de symétrie (ou plan-miroir) de la distribution.

Notons M’(x, y, – z) le symétrique du point M (x, y, z ) par rapport au plan �.

3.1.1.1. Courants filiformes (doc. 10)

La distribution de courants filiformes est invariante par symétrie par rapport au plan
P si les circuits orientés sont inchangés par cette symétrie et si l’intensité en M
est égale à l’intensité en M’.

3.1.1.2. Courants volumiques (doc. 11)

La distribution de courants volumiques est invariante par symétrie par rapport au
plan P si les densités de courant j

→

et j’
→

en M et M’ sont symétriques l’une de
l’autre par rapport au plan � , soit ici :

j’x � jx ; j’y � jy ; j’z � � jz .

3.1.2. Antisymétrie plane

Nous considérons maintenant une distribution de courants telle que le plan (xOy),
noté P* soit un plan d’antisymétrie (ou plan anti-miroir) de la distribution.
Notons M’ (x, y, – z ) le symétrique du point M (x, y, z) par rapport au plan P*.

Les distributions de courants peuvent présenter des symétries remarquables.
Les symétries élémentaires sont les symétries et les antisymétries planes,
l’invariance par translation selon un axe et l’invariance par rotation autour
d’un axe.
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6. Distributions de courants

Doc. 9. Solénoïde « simple couche ».

z

II

I I

Doc. 10. Les courants circulant dans
#1, #’1, #2 et #’2 forment une distri-
bution invariante par symétrie par rap-
port au plan Π.

z

x

y

M'

�'1

�'2 �2

i1 i1

i2 i2
�1

M

P

Doc. 11. Symétrie plane.

�

x

z
y

j'

M

j

M''

�



3.1.2.1. Courants filiformes

Le plan P* est plan d’antisymétrie pour la distribution de courants filiformes
(doc. 12) si lors d’une symétrie par rapport à P* :
• les circuits non orientés sont inchangés,
• l’orientation des circuits change de sens,
• l’intensité en M est égale à l’intensité en M’.

3.1.2.2. Courants volumiques

Notons encore j
→

et j’
→

les vecteurs densité de courant en M et M’. Le plan P*
est plan d’antisymétrie pour la distribution de courants volumiques (doc. 13) si j’

→

est égal à l’opposé du symétrique de j
→

par rapport à P*, soit ici :
j’x � – jx ; j’y � – jy ; j’z � jz .

3.1.3. Invariance par translation

Une distribution est invariante par translation parallèlement à un axe ∆ lorsque le
courant en M est identique au courant en tout point M’ obtenu par une transla-
tion de M parallèlement à cet axe. Il est nécessaire pour cela que la distribution
soit illimitée dans la direction de l’axe ∆.

3.1.3.1. Courants volumiques

Une distribution est invariante par translation le long de l’axe (Oz) si le vecteur
densité de courant j

→

ne dépend pas de la coordonnée z :

j
→

(x, y, z) �j
→

(x, y) .

108

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

6. Distributions de courants

Doc. 12. Les courants circulant dans
#1, #’1 , #2 et #’2 forment une distri-
bution pour laquelle P* est un plan
d’antisymétrie.

z

x

y

M'

�'2 �2

i1 i1i2
i2

�1

M

P *

Doc. 13. P* est un plan d’antisymétrie
pour la distribution de courants.

�

x

P *

zy
j'

M

j

M'

Courants sur les plans-miroirs et antimiroirs

Que peut-on dire des courants aux points M appartenant à
un plan-miroir P ou antimiroir P* d’une distribution
de courants ?

En un point M appartenant à un plan-miroir � , le vec-
teur j

→

doit coïncider avec son symétrique j’
→

puisque
M’ �M . Par conséquent, sur un plan-miroir, le vecteur j

→

appartient à ce plan. Les lignes de courant de la distribution
seront ainsi tangentes au plan-miroir, comme sur le docu-
ment 11 pour le plan-miroir (xOy) .

Si le point M est sur un plan-antimiroir P*, le vecteur
j

→

sera perpendiculaire à ce plan.

Sur le document 13, les lignes de courants coupent le
plan (xOy) perpendiculairement.

Application 2



3.1.3.2. Courants filiformes

Envisageons deux cas particuliers :

• Courant parallèles à l’axe D (doc. 14)

Une distribution de courants portés par un ensemble de fils rectilignes infiniment
longs et parallèles à l’axe ∆ est invariante par translation (doc. 14). Rigoureusement,
une telle distribution est impossible car incompatible avec la nécessité de fermer
les circuits. En revanche, il peut s’agir d’une excellente approximation dans un
domaine limité de l’espace, à proximité des fils.
Notons que tout plan orthogonal à ∆ est un plan anti-miroir pour cette distribution.

• Courants dans un plan orthogonal à D
Considérons le système de spires filiformes identiques et régulièrement espacées
représenté sur le document 15. Au sens strict, cette distribution n’est pas invariante
par translation le long de ∆. Mais si les fils sont fins et très proches les uns des
autres, un observateur un peu éloigné peut considérer qu’il s’agit d’une nappe conti-
nue, invariante par translation.
Notons que tout plan orthogonal à ∆ est plan-miroir pour cette distribution.

3.1.4. Invariance par rotation

3.1.4.1. Courants volumiques

Pour une distribution de courants invariante par rotation autour de l’axe (Oz) (doc. 16),
les coordonnées de j

→

, dans la base locale (e→r , e→� , e→z) des coordonnées cylindriques
d’axe (Oz), sont indépendantes de l’angle � :

j
→

(r, �, z) �jr (r, z) e→r �j� (r, z) e→� � jz (r, z) e→z .

Notons que pour une distribution de courants invariante par rotation, le passage de
j

→

(M ) à j’
→

(M’ ) s’obtient par une rotation.

3.1.4.2. Courants filiformes

Pratiquement, nous trouvons deux cas de distributions filiformes invariantes par
rotation :

• Ensemble de spires circulaires d’axe (Oz) (doc. 17)

Notons que dans ce cas, tout plan contenant l’axe (Oz) est un plan anti-miroir de
la distribution de courant : I (r, q, z) = I (r, z).

• Fil confondu avec l’axe (Oz)

Dans ce cas, tout plan contenant l’axe (Oz) est plan-miroir.

3.2. Distributions à symétries multiples
Les distributions que nous rencontrerons seront fréquemment invariantes vis-à-
vis de plusieurs symétries élémentaires. Les cas particuliers de distributions inva-
riantes par translation ou par rotation présentés possédaient ainsi déjà des plans-
miroirs ou anti-miroirs.

3.2.1. Symétrie cylindrique

Une distribution à symétrie cylindrique est invariante par translation parallèlement
à un axe (Oz) et invariante par rotation autour de cet axe.

La densité de courants doit donc être de la forme :

j
→

(r, �, z) � jr (r) e
→

r �j� (r) e
→

� � jz (r) e
→

z .
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6. Distributions de courants

Doc. 14. Distribution de courants fili-
formes invariante par translation paral-
lèlement à ∆. P* est un plan anti-miroir.

y

(P*)

i1

i2

i3

i4

∆

Doc. 15. Distribution invariante par
translation dans le cas limite où les fils
sont très serrés. (P) est un plan miroir.

(P )

Doc. 16. Invariance par rotation autour
de (Oz).

z

�

�

z’

Doc. 17. Distribution de courants fili-
formes invariante par rotation d’axe
(Oz).

z



Nous pourrons rencontrer les cas suivants :

• courants plans et annulaires d’axe (Oz) :

j
→

� j� (r) e
→

� .

Pour ces courants, tout plan perpendiculaire à (Oz) est un plan de symétrie des
courants et tout plan contenant (Oz) est un plan d’antisymétrie (doc. 18).

C’est le cas des courants solénoïdaux ou sur des spires (doc. 19).

• courants de direction (Oz) :

j
→

� jz (r) e
→

z .

Pour ces courants, tout plan perpendiculaire à (Oz) est un plan d’antisymétrie des
courants et tout plan contenant (Oz) est un plan de symétrie (doc. 20). C’est le cas
des courants filiformes sur un fil infini ;

• courants radiaux :

j
→

� jr (r) e
→

r .

Pour ces courants, tout plan perpendiculaire à (Oz) et tout plan contenant (Oz) sont
des plans de symétrie des courants.

Les deux répartitions de courants précédentes sont à flux conservatif, quelle que
soit la fonction de r . En régime permanent, sans accumulateur de charges, la conser-
vation de la charge impose que l’intensité I soit la même à travers tout cylindre de
rayon r, de hauteur h et d’axe (Oz). Ainsi, pour les courants radiaux :

2π rh j r (r) � I ou encore j
→

� e
→

r .

C’est le cas des courants radiaux existant dans une diode à vide à symétrie
cylindrique dont la cathode est confondue avec l’axe (Oz) (doc. 21).

3.2.2. Symétrie sphérique

La distribution est invariante par rotation autour de tous les axes passant par le centre
de symétrie. Elle l’est aussi par rapport à tout plan contenant ce même point.
En utilisant les coordonnées sphériques r, � et j avec origine au point centre de
symétrie, nous avons (doc. 22) :

j
→

(r, �, j) �j (r) e→r .

En régime permanent, sans accumulation de charges, la conservation de la charge élec-
trique impose que l’intensité I soit la même à travers toute sphère de centre O, soit :

4π r 2 j (r) � cte � I .

Ceci impose l’existence d’une source de charges au point O et d’intensité I, par
exemple sous la forme de courant d’amenée filiforme.
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6. Distributions de courants

Doc. 18. Distribution de courants annu-
laires.

z

�

�

z’

*

Doc. 19. Courants solénoïdaux, ou sur
des spires.

y

x

r

z

j = j(r) e��

Doc. 20. Courant filiforme sur un fil
infini.

z

j = j(r) ez

Doc. 22. Courants à symétrie sphérique.

�

x y

z

O

j

j

j

Doc. 21. Courants à symétrie cylin-
drique.

gaz d'électrons
dans le vide

cathode

I

j = j(r) er

I
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6. Distributions de courants

Exemples de courants surfaciques

Identifier les symétries des distributions surfaciques de
courants suivantes :

a) nappe plane de courants confondue avec le plan (yOz)
et de densité j

→

S �jS e→y uniforme ;

b) nappe hélicoïdale de courants de densité :

j
→

S � jS� e→� �jSz e→z

(avec jS� et jSz uniformes) sur un cylindre de rayon R
et d’axe (Oz).

a) La distribution est invariante par translation selon e→y
et e→z , car j

→

S ne dépend ni de y , ni de z .

Tout plan parallèle à (xOy) est un plan-miroir, alors que
tout plan parallèle à (xOz) est un plan-anti-miroir.

Aucune symétrie de rotation (ou invariance par rotation)
n’intervient.

b) La distribution est invariante par translation selon e→z ,
et j

→

S ne dépend pas de la variable z .

Elle est de plus invariante par rotation autour de (Oz),
car j

→

S ne dépend pas de q .

Il n’existe aucun plan de symétrie, ni d’antisymétrie.

Il sera judicieux de traiter une telle distribution comme
résultant de la superposition d’un courant de densité sur-
facique j

→

S1 � jSz e→z et d’un courant de densité surfa-
cique j

→

S2 � jS� e→� , qui, traités séparément, ont des pro-
priétés de symétries planes remarquables.

Application 3

● COURANT ÉLECTRIQUE
Un courant électrique résulte d’un mouvement d’ensemble (ou de dérive) des porteurs de charges.

L’intensité I (S, t) du courant électrique à travers une surface S est liée à la charge δQm qui travers S entre
les instants t et t + δ t, par la relation :

δQm = I (S, t) δ t .

L’intensité, grandeur électrique, dépend de l’orientation de S et s’évalue en ampère (A).

● DISTRIBUTIONS DE COURANTS
Une ligne de courant est une ligne en tout point de laquelle le vecteur densité du courant lui est tangent.
Un tube de courant est un ensemble de lignes de courant s’appuyant sur un contour.
En régime permanent statique (indépendant du temps), l’intensité d’un courant filiforme a la même valeur en
tout point d’un fil sans dérivation.
En régime permanent statique (indépendant du temps), un courant filiforme ne peut exister que sur un circuit
fermé.

Le vecteur densité volumique associé à un mouvement d’ensemble à vitesse v→ est :
j

→

= nqv→ = r m v→ .
L’intensité du courant électrique traversant une surface S est égale au flux du vecteur densité volumique de
courants j

→

(r→, t) à travers cette surface :

I (S, t) =��
S

j
→

(r→, t) . dS
→

.

Les distributions de courants peuvent présenter des symétries remarquables. Les symétries élémentaires sont
les symétries et les antisymétries planes, l’invariance par translation selon un axe et l’invariance par rotation
autour d’un axe.

C Q F R
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Avez-vous retenu l’essentiel ?

✔ Définir l’intensité I (S, t) d’un courant électrique à travers une surface S .
✔ Citer et définir les divers types de courants électriques.
✔ Quelle relation lie le vecteur densité de courant j

→

d’un courant de conduction, à la vitesse d’ensemble des
charges mobiles v→ ?

✔ Définir le vecteur densité surfacique de courant j
→

S .
✔ Démontrer qu’en régime permanent, l’intensité I est la même en tout point d’un conducteur filiforme.
✔ Définir une distribution de courants filiformes antisymétrique par rapport au plan P*.

Du tac au tac (Vrai ou faux)

Contrôle rapide

1. En régime permanent, l’intensité traversant
une surface fermée S est nulle.
❑ Vrai ❑ Faux

2. Les courants filiformes sont des courants fer-
més, en régime permanent.
❑ Vrai ❑ Faux

3. Quand des charges sont déposées sur un isolant,
elles ne peuvent pas créer de courants.
❑ Vrai ❑ Faux

4. Pour une spire circulaire de centre O et d’axe
(Oz) parcourue par un courant I, tout plan
contenant l’axe (Oz) est plan de symétrie.
❑ Vrai ❑ Faux

5. Pour une spire circulaire de centre O d’axe
(Oz) parcourue par un courant I le plan z = 0
est plan de symétrie.
❑ Vrai ❑ Faux

� Solution, page 114.
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6. Distributions de courants

Spire portant un courant filiforme
d’intensité I

Soit une spire de rayon a et
d’axe (Oz), parcourue par un
courant d’intensité I .
Quelles sont les symétries et
invariances de cette distri-
bution ?

Système de deux fils infinis parallèles

Soit deux fils infinis parallèles
à l’axe (Oz), passant par les
points A 1(0, �a, 0) et
A2(0, �a, 0) portant des cou-
rants filiformes I 1 et I 2 .
Définir les symétries et inva-
riances de cette distribution
dans les trois cas suivants :

1) I 1 et I 2 quelconques ;
2) I 1 � I 2 � I ;
3) I 1 � I et I 2 ��I .

Plan portant une distribution de courants
filiformes rectilignes

Un ensemble infini de fils rectilignes jointifs de longueur infi-
nie et de faible section est disposé dans le plan (xOz) paral-
lèlement à l’axe (Oz).

1) Sachant que le nombre de fils par unité de longueur paral-
lèlement à l’axe (Ox ) est n et que l’intensité des courants
dans chacun des fils est I , déterminer le vecteur densité sur-
facique de courant j

→

S de la nappe de courant équivalente.

2) Quelles sont les symétries et les invariances de cette dis-
tribution surfacique de courants.

Courant angulaire

Soit un courant angulaire
constitué de deux courants
rectilignes semi-infini faisant
un angle 2� entre eux.

Quelles sont les symétries et
invariances de ce système de
courants ?

Demi-cylindre portant une distribution
de courants filiformes rectilignes

Un ensemble infini de fils rectilignes jointifs de longueur infi-
nie et de faible section est disposé sur un demi-cylindre d’axe
(Oz), parallèlement à cet axe.

1) Soit n le nombre de fils par unité de longueur le long d’un
demi-cercle de section droite du cylindre et I l’intensité des
courants dans les fils, déterminer le vecteur densité surfacique
de courant j

→

S de la nappe de courant équivalente.

2) Étudier les symétries et les invariances de cette distribu-
tion surfacique.

Courants filiformes à l’intérieur
d’une gaine cylindrique

À l’intérieur d’un cylindre d’axe (Oz) se trouve un ensemble
compact de N fils rectilignes de longueur infinie et de faible
section disposés parallèlement à (Oz). L’intensité de chacun
des courants filiformes est I .

1) Déterminer le vecteur densité de courant volumique j
→

v de
la distribution volumique équivalente.

2) Quelles sont les symétries et les invariances de cette dis-
tribution volumique ?

Cylindre avec cavité portant
une densité volumique de courants

Un cylindre infini à base
circulaire est parcouru par un
courant volumique uniforme
parallèle à ses génératrices.
Dans ce cylindre existe une
cavité cylindrique de base cir-
culaire et de génératrices
parallèles au cylindre précé-
dent. Étudier les symétries et
invariances de cette réparti-
tion de courants.

x

z

y

I
O

x

z

y
– a + a

O

P1 P2
I2I1

x

OO

z y

I

y

z
xO�

�

yz

x
jV

O O1

Exercices
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Courant filiforme sur une hélice

Le schéma ci-dessous représente une hélice droite d’axe (Oz),
correspondant à l’ensemble des points en coordonnées carté-

siennes {x �R cos (�) ; y �R sin (�) ; z � , � variant de
� min à � max} .

Cette hélice est parcourue par un courant filiforme I .
Quelles sont les symétries ou invariances de cette répartition
de courants ? Examiner le cas de l’hélice infinie pour :

� min ��∞ et � max ��∞ .

Bobinage simple couche

Un bobinage est réalisé sur un cylindre d’axe (Oz ), entre les
plans de cote z1 et z2 , à l’aide d’un fil de faible section.

Les spires sont jointives et parcourues par un courant d’in-
tensité I .

Nous modéliserons ce bobinage comme un ensemble de spires
circulaires d’axe (Oz) dont le nombre par unité de longueur
parallèlement à l’axe (Oz) est n .

1) Montrer que cet ensemble de courants filiformes est modé-
lisable par une nappe de courant dont la densité superficielle
est, en coordonnées cylindriques d’axe (Oz ) :

jS = n I eq .

2) Le cylindre étant de dimension finie, quelles sont les symé-
tries et les invariances de cette distribution de courant ?

3) Examiner le cas d’un cylindre de longueur infinie.

Le plan (xOy) est un plan de symétrie des courants (P ) .

Les plans (xOz) et (yOz) sont des plans d’antisymétrie des courants (P*). Il en est
d’ailleurs de même pour tout plan contenant l’axe (Oz) .

Le système de courants est invariant par toute rotation autour de (Oz) .

Dans les trois cas :

• le plan (yOz) est un plan de symétrie des courants (� ) ;

• tout plan perpendiculaire à l’axe (Oz) (en particulier (xOy)) est un plan d’antisy-
métrie des courants (�*) ;
• la répartition est invariante par toute translation suivant (Oz).

1) Aucune autre symétrie ou invariance.

2) Le plan (xOz) est un plan de symétrie des courants (� ) .

3) Le plan (xOz) est un plan d’antisymétrie des courants (�*) .

1) jSn = n I ezn = jS ezn .

2) • Plans de symétrie des courants (� ) :

– le plan (xOz) ;

– tout plan perpendiculaire à (Ox) (en particulier (yOz)).

• Plans d’antisymétrie des courants (�*) :

– tout plan perpendiculaire à (Oz) .

y

x
�

P

R cos �

R sin �

z

H

y

x

zjS

x

z

y
jS

e��

Corrigés
Solution du tac au tac, p. 112.
1. Vrai
2. Vrai
3. Faux

4. Faux
5. Vrai
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6. Distributions de courants

Le plan (xOy) est un plan de symétrie (� ) des courants. Le plan (xOz) est un

plan d’antisymétrie (�*) des courants. Il n’y a aucune invariance.

1) jSn = n I ezn = jS ezn .

2) Le plan (xOz) est un plan de symétrie (� ) des courants.

Tout plan perpendiculaire à l’axe (Oz) est un plan d’antisymétrie (�*) des courants,
en particulier le plan (xOy) .

1) jvn = = nI .

2) Tout plan passant par (Oz) est un plan de symétrie des courants (� ), en
particulier (xOz) et (yOz). Tout plan perpendiculaire à (Oz) est un plan d’antisymétrie

des courants (�*). Le système est invariant par toute translation suivant (Oz), et par
toute rotation autour de l’axe (Oz).

Le plan (xOz) est un plan de symétrie (� ) des courants. Tout plan perpendi-

culaire à l’axe (Oz) est un plan d’antisymétrie (�*) des courants. Le système de cou-
rants est invariant par toute translation suivant (Oz).
Si O et O1 sont confondus, alors tout plan contenant l’axe (Oz) est un plan de symé-
trie (� ) des courants et le système de courants est invariant par toute rotation autour
de l’axe (Oz) .

• Hélice de dimension finie

Lorsque l’hélice est de dimension finie, il n’existe aucune symétrie et invariance.

• Hélice de dimension infinie
Lorsque l’hélice est de dimension infinie, il y a une seule symétrie remarquable :
invariance par translation d’une longueur multiple entier du pas p de l’hélice.

1) Soit L = z2 – z1 . Sur une section du bobinage, passe une intensité totale

égale à n LI et les lignes de courant sont orientées comme enq . D’après la définition
de la densité surfacique de courant :

It = n LI soit : jSn = n I enq .

2) Nappe solénoïdale finie

Tout plan passant par l’axe (Oz) est un plan d’antisymétrie (�*) des courants. Le système
de courants est invariant par toute rotation autour de (Oz).

Le plan de cote est un plan de symétrie (� ) des courants.

3) Nappe solénoïdale infinie

Tout plan passant par l’axe (Oz) est un plan d’antisymétrie (�*) des courants. Le
système de courants est invariant par toute rotation autour de (Oz).

Tout plan perpendiculaire à (Oz) est un plan de symétrie (� ) des courants.
Le système de courants est invariant par toute translation suivant (Oz).
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Champ
magnétique7

Un courant électrique crée un champ magnétique,
et un fil parcouru par un courant placé dans
un champ magnétique subit une force dite de Laplace.
Historiquement ces notions se sont imposées
progressivement, la référence à la matière aimantée
compliquant l’interprétation des phénomènes.

Tout ou presque débute en 1819
avec Hans-Christian Oersted, physicien danois,
qui observe le déplacement d’une aiguille aimantée
à proximité d’un fil conducteur
parcouru par un courant électrique.

En 1820, Jean-Baptiste Biot et Félix Savart
étudient les propriétés de la force
« subie par l’un des pôles magnétiques »
de l’aiguille aimantée et
Pierre-Simon de Laplace traduit cette loi
par une formule qui porte le nom de Biot et Savart.

André-Marie Ampère (1775-1836),
considéré comme le fondateur de l’électromagnétisme,
déduit de cette étude la notion
et les propriétés du champ magnétostatique
créé par des courants.
Le choix du nom de ce physicien français,
pour l’unité d’intensité électrique
dans le système international d’unités,
est une reconnaissance de ses travaux en électricité.

O B J E C T I F S

■ Obtention du champ magnétique par la loi
de Biot et Savart.
■ Propriétés de symétrie.
■ Flux du champ.

P R É R E Q U I S

■ Distributions de courants.
■ Étude du champ magnétique du cycle secon-
daire.



Force de Lorentz et champ magnétique1
1.1. Force de Lorentz
Nous savons qu’un aimant ou une bobine de spires conductrices parcourues par un
courant électrique sont sources de champs magnétiques B

→

. Ces champs se mani-
festent par la force de Lorentz que subit une particule mobile de charge q et de vitesse
v
→

: F
→

�q v
→

� B
→

, ou par la force de Laplace que subit un élément d	
→

de circuit
parcouru par un courant d’intensité I :

dF
→

�Id	
→

� B
→

.

Nous n’étudierons dans ce cours que le champ magnétique créé par des courants.

Remarque : Rappelons qu’il existe un champ magnétique terrestre (cf. chapitre 9) dont
la composante horizontale, en France, est de l’ordre de 2 .10�5 tesla.

1.2. Cadre d’étude
Les lois à venir sont rigoureusement valables dans le cas de la magnétostatique, c’est-
à-dire pour des régimes indépendants du temps (courants constants, pas d’accumula-
tion de charges). Nous emploierons souvent l’expression « champ magnétique » au
sens de « champ magnétostatique » par la suite.

Ces lois sont encore applicables à des dispositifs expérimentaux de dimension carac-
téristique L , dans le cas des régimes variables de temps caractéristique T, tant que
L �� cT où c est la vitesse de la lumière dans le vide. La justification de cette
approximation des régimes quasi-permanents (ou « lentement variables ») sera vue
en seconde année.

■ Mesure du champ

La force de Laplace (vue en classe de première), subie par un élément d	
→

de cir-
cuit parcouru par un courant d’intensité i : dF

→

�id	
→

� B
→

, est mesurable.

Le champ magnétique B
→

appliqué à un circuit parcouru par un courant i peut donc
être mesuré à partir de la mesure de la force F

→

subie par celui-ci (doc. 1).

En fait une sonde à effet Hall, moins encombrante et plus précise, sera générale-
ment préférée pour la mesure des champs magnétiques.

117

7. Champ magnétique

Cadre de l’approximation des régimes
lentement variables

Nous désirons étudier le champ créé par une bobine
(extension de l’ordre de 10 cm) parcourue par un cou-
rant I sinusoïdal de fréquence f �10 kHz . La loi
de Biot et Savart, que nous allons énoncer, donnant
le champ magnétique dans le cas d’un régime
permanent, vous semble-t-elle utilisable pour évaluer le
champ créé à quelques mètres de la bobine ?

Le temps caractéristique du problème est :

T � �0,1 ms .

Dans ces conditions, cT �30 km (cT est la longueur
d’onde, dans le vide, d’une onde électromagnétique de
fréquence f ).
Le champ magnétique, calculé à l’aide de la loi de Biot
et Savart, décrira le champ réel avec une excellente
approximation à des distances faibles devant cT .

Application 1

Doc. 1. Force de Laplace s’exerçant sur
le rail A1A2 .

B

i

A2

A1

F
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Loi de Biot et Savar t2
2.1. Vecteur élément de courant
• Considérons un circuit filiforme parcouru par un courant d’intensité I et notons d	

→

un déplacement élémentaire le long de ce circuit, dans le sens que du courant (doc. 2).
Par définition, on appelle élément de courant le vecteur polaire :

dC
→

= I d	
→

.

La norme d’un élément de courant s’évalue en A.m.

• Lorsque la section du circuit n’est plus petite à l’échelle macroscopique, il est perti-
nent, sinon indispensable, de s’interroger sur la répartition du courant dans le circuit.
Pour cela nous serons obligés d’introduire une modélisation continue. Nous analyse-
rons alors le circuit comme un ensemble de tubes de courants mésoscopiques, fili-
formes, jointifs, d’intensité dI , placés à l’intérieur de la surface externe du circuit
(doc. 3a). À un élément de longueur d	

→

d’un tube de courant mésoscopique, sera
associé le vecteur de courant : dC

→

= dl d	
→

. Notons s la section de ce tube de courant
et j

→

le vecteur densité volumique de courant à travers la section considérée, il vient :

dC
→

= dl d	
→

= js d	
→

= j
→

dt
puisque j

→

et d	
→

sont colinéaires et de même sens.

Une distribution volumique de courants peut s’analyser en une distribution conti-
nue de courants filiformes mésoscopiques.

Cette équivalence est fréquemment utilisée. En effet, dans la pratique, nombre de
circuits filiformes se présentent sous la forme de bobinages multicouches avec des
spires jointives de faible section. La structure d’une telle bobine, avec ses spires
filiformes, rappelle en tous points celle du courant précédent lorsqu’il est analysé
en tubes de courant mésoscopiques. Pour calculer les champs créés par de tels cir-
cuits, il sera alors très commode d’avoir recours à une modélisation volumique,
continue, nivelant le caractère discret du bobinage.

• Une démarche analogue peut être adoptée pour une distribution de courants sur-
faciques. Tout courant surfacique peut être analysé comme une distribution conti-
nue de rubans mésoscopiques, filiformes, jointifs, d’intensité d I (doc. 3b). À un
élément de longueur d	

→

d’un ruban de courant mésoscopique, sera associé le vec-
teur de courant : dC

→

= dI d	
→

. Notons a la section d’un ruban de courant et js le
vecteur densité surfacique de courant à travers la section considérée, il vient :

dC
→

= dI d	
→

= js a d	
→

= j
→

s dS

puisque j
→

s et d	
→

sont colinéaires et de même sens.

Cette équivalence pourra être utilement exploitée quand il s’agira, par exemple, de
calculer le champ créé par une bobine monocouche à spires jointives de faible sec-
tion.

Une distribution surfacique de courant peut s’analyser en une distribution conti-
nue de courants filiformes mésoscopiques.

• En conclusion, nous retiendrons que :

Par la suite, cette analyse ne sera pas toujours explicitement faite sur les distribu-
tions de courants étudiés, mais il ne tient qu’au lecteur de s’en convaincre en l’ef-
fectuant.

Toute distribution de courants peut s’analyser comme une distribution de
courants filiformes dont la caractéristique locale est l’élément de courant dC

æÆ

.
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7. Champ magnétique

Doc. 2. Élément de courant d’un cou-
rant filiforme : dC

→

= I d	
→

.

P

ndC

nd	

I

Doc. 3a. Tube de courant mésoscopique
considéré comme circuit filiforme :

dC
→

= j
→

dt .

ndC

nj
nd	

s

Doc. 3b. Ruban de courant mésosco-
pique considéré comme circuit fili-
forme :

dC
→

= j
→

s dS .

ndS

njs

nd	

a



2.2. Champ attribué à un élément de courant
Alors que les charges sont les sources du champ électrostatique, les éléments de
courant sont les sources du champ magnétique.

Comme il est impossible d’isoler un élément de courant, nous ne pouvons pas véri-
fier directement ce postulat : la seule grandeur ayant une signification physique (en
tant que grandeur mesurable) est le champ résultant B

→

créé par toute la distribu-
tion de courants �.

• Nous pouvons aussi attribuer un élément de courant à chaque particule chargée
en mouvement. Imaginons que sur une longueur δ	 d’un fil conducteur, il y ait N
particules mobiles de charge q et de vitesse v . Ces N particules traversent

une section du fil pendant la durée δ t = , d’où la valeur de l’intensité :

I =

et donc pour l’élément de fil :

δC
→

= N q v→.

Nous pouvons associer à chaque particule en mouvement un élément de courant :
C
→

= q v→ .

Le coefficient �0 , dimensionné, vaut exactement �0 �4π . 10�7 H . m�1

(H désigne le henry, unité d’inductance).

L’unité de champ magnétique est le tesla (symbole : T) .
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Nous postulons que l’expression de la contribution d’un élément de courant
d C

→

, situé au point P , au champ total B
→

(M) créé en M par une distri-
bution de courants est donnée par la loi de Biot et Savart :

dB
→

(M ) � dC
→

� dC
→

� .

Le champ B
→

(M) étant la somme des contributions élémentaires, avec
dC

→

� j
→

d� ou dC
→

� j
→

S dS ou dC
→

� Id l
→

selon les cas.

Doc. 4. dB
→

est perpendiculaire au plan
défini en P par les vecteurs dC

→

et PM
→

.

M

P nePnM

ndB(M)

ndC

Unités de Bk et m0

Exprimer les dimensions de B
→

et � 0 à l’aide des uni-
tés : kg , m, s et A du Système International d’unités.

F
→

�qv→ � B
→

est une force, mesurée en kg . m . s� 2 . La
dimension du champ magnétique est donc :

[B] �

[B] �kg . A� 1. s� 2 � T .

Utilisant l’expression de la loi de Biot et Savart, nous
avons :

[� 0] �[B]

[� O] � T . m2 . A� 1 . m� 1

[� O] � kg . m . A� 2. s� 2 .
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2.3. Expression du champ magnétique par la loi de Biot
et Savart

La loi Biot et Savart postule que le champ créé en un point M par une distribution
$ (doc. 5) s’obtient par superposition des contributions élémentaires d B

→

des
éléments de courant de la distribution :

Suivant le type de distribution, nous écrirons ce champ sous l’une des formes suivantes.

■ Distribution volumique

■ Distribution surfacique

■ Distribution filiforme

Le régime permanent imposant au courant d’être « bouclé sur lui-même », cette
dernière distribution a la forme d’un contour C, et nous pourrons aussi écrire :

B
→

(M) � �
C

I dP
→

� .

Remarques

• L’analogie de ces expressions avec celles donnant le champ électrostatique d’une

distribution est remarquable : il suffit de transposer en et [dqP]

en [dC
→

�] dans les expressions donnant le champ. Nous verrons en seconde année
que cette analogie a une signification profonde. Les champs électrostatique et
magnétique sont deux facettes d’un même objet, le champ électromagnétique.

• Pour une distribution volumique de courants, l’intégrale de Biot et Savart permet
le calcul du champ magnétique en tout point de l’espace.

• Dans le cas d’une distribution surfacique, cette intégrale n’autorise pas le calcul
du champ sur la nappe de courant. (Nous verrons qu’il existe une discontinuité
finie de la composante tangentielle de B

→

à la traversée de cette surface.)

• Pour une schématisation filiforme, il est exclu de calculer le champ magnétique
en un point du circuit : l’intégrale y est alors divergente. (Observer le résultat du
calcul du champ d’un fil rectiligne infini lorsque r tend vers 0, dans l’exercice 5 .)
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7. Champ magnétique

B
→

(M ) =

B
æÆ

(M ) �

B
æÆ

(M ) �

B
æÆ

(M ) �

Doc. 5. Champ magnétique d’une dis-
tribution de courants.

�

P

dC

M

dB



� Pour s’entraîner : ex. 6, 7, 8 et 9.

Topographie du champ3
3.1. Lignes de champ

3.1.1. Définition

Le champ est continuellement tangent à des courbes appelées lignes de champ
(doc. 8). Ces lignes sont orientées dans le sens du champ.

3.1.2. Équation d’une ligne de champ

Un déplacement élémentaire d M
→

le long d’une ligne de champ est parallèle au
champ B

→

. L’équation différentielle (vectorielle) d’une ligne de champ est :

dM
→

� B
→

�0
→

.

Nous obtiendrons la ligne de champ issue d’un point initial donné par intégration
de cette équation différentielle.
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7. Champ magnétique

Champ créé par une spire circulaire
sur son axe

Calculer le champ magnétostatique créé par une spire
de rayon R en un point M de son axe, le rayon de la spire
étant vue sous l’angle a depuis M (doc. 6).

Associons à un point P sur la spire, repéré par ses coor-
données cylindriques R , � et zP �0 , un élément de
courant d C

→

� � R d � . e �
→ . Le champ élémentaire d B

→

attribué à cet élément de courant est représenté sur le
document 7.

Lorsque le point P décrit la spire, � varie de 0 à 2π, et
d B

→

décrit le cône de sommet M et de demi-angle

� a . Par conséquent, le champ total B
→

(M ) sera

dirigé selon (Oz) :

B
→

(M ) �(B
→

(M ) .e z
→).e z

→
�� dB

→

. e z
→�.e z

→ .

Or, nous avons :

dB
→

.e z
→ = � Rd � .e �

→ � �.e z
→

= � �. e z
→ = d� . .

Le champ magnétique d’une spire circulaire sur son
axe vaut :

B
→

(M ) � sin3 a .e z
→ .

En particulier, le champ magnétostatique créé au centre
de la spire vaut :

B
→

(O ) � e z
→ .

Ces deux résultats méritent d’être mémorisés (et doivent
pouvoir être retrouvés rapidement).

Application 3

M

P

I O

R

z
�

Doc. 6. Spire circulaire.

eP M dB

M

P

I O

R
r

z

�
2

–�

�

Doc. 7. Élément de champ magnétique.

Doc. 8. Exemple de ligne de champ.

B(M)

M
ligne de champ



3.2. Visualisation d’une ligne de champ

3.2.1. Expérimentalement

Il est possible de visualiser les lignes de champ d’un système de courants (ou d’ai-
mants) en procédant de la manière suivante.

Sur une plaque de verre ou de plexiglas, située dans la zone utile du champ magné-
tique, on saupoudre de la limaille de fer. Les grains de limaille (de forme allongée)
sous l’action du champ magnétique se transforment en petits aimants (ou petites
boussoles) qui s’orientent alors parallèlement à ce champ magnétique.

Ces petits aimants s’alignant les uns derrière les autres concrétisent approximati-
vement une ligne de champ (doc. 9). On obtient ainsi les spectres magnétiques des
documents 10 et 11.

3.2.2. Par simulation

Lors d’un tracé de ligne de champ par simulation (doc. 12), l’équation différen-
tielle dM

→

� B
→

�0
→

est résolue en partant d’un point donné de l’espace.

3.3. Tube de champ
L’ensemble des lignes de champ s’appuyant sur une courbe fermée (ou contour) C
engendre une surface S appelée tube de champ, représenté sur le document 13.

3.4. Points de champ nul, points singuliers
Deux lignes de champ ne peuvent pas se couper, comme le suggère le document 14,
en un point M où le champ magnétique est défini et non nul. La direction du champ,
donc le champ lui-même, ne serait pas définie en ce point.

Si le champ est nul au point M, alors M est appelé point de champ nul (ou point
d’arrêt).

Propriétés de symétrie4 du champ magnétique

Comme en électrostatique, le calcul de la valeur du champ à partir des intégrales
est souvent pénible ; nous rencontrerons des situations où la distribution de charges
possède des symétries remarquables, qui peuvent simplifier considérablement la
détermination du champ.
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7. Champ magnétique

Doc. 9. Les éléments de la limaille de fer
se comportent comme des petits aimants
qui s’orientent parallèlement au champ
magnétique.

limaille de fer

Doc. 10. Exemple : spectre magnétique
d’un solénoïde (ensemble de spires).

Doc. 11. Exemple : spectre magnétique
d’un aimant.

Doc. 13. Tube de champ.

lignes
de champ

contour C

tube de champ (S)

Doc. 14. Point de champ nul.

M
?

Doc. 12. Lignes de champ du vecteur
champ magnétique créé par une spire.

z

x

I



4.1. Symétrie plane
Supposons la distribution $ invariante par une symétrie plane 6 par rapport à
un plan � .

Plaçons-nous en un point M du plan de symétrie. Considérons les contributions
élémentaires d B

→

P (M ) et d B
→

P’ (M ) au champ total des deux éléments de
courants d C

→

et d C’
→

associés aux points P et P’ symétriques l’un de l’autre par
rapport à � . Le document 15 fait apparaître les différentes orientations de dC

→

et
dC’

→

envisageables, et montre que d B
→

�dB’
→

est perpendiculaire au plan � .

Nous pouvons ainsi conclure (doc. 16 a) :

Plus généralement, nous aurons (doc. 16 b) :

En résumé : B
→

(S (M)) = – S (B
→

(M)).

Remarque

Nous laissons le soin au lecteur de s’en convaincre en utilisant une méthode analogue
à celle qui a été utilisée à ce propos pour le champ électrostatique au chapitre 2, ce qui
est un peu fastidieux, et proposons au lecteur l’application qui suit pour se convaincre
des propriétés particulières de symétrie du produit vectoriel de deux vecteurs.

Au point M’ symétrique d’un point M par rapport à un plan-miroir � ,
le champ magnétique B’

→

est l’opposé du symétrique du champ B
→

en M par
rapport à ce plan.

Le champ magnétique B
→

est perpendiculaire à un plan-miroir � en chacun
de ses points.
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7. Champ magnétique

�

dBP

M
dBP'

dCdC'

PP'

�

M
dBP'dBP

dC' dC

PP'

�

M
dBP'dBP

dC' dC

PP'

Doc. 15 a. Doc. 15 b. Doc. 15 c.

�

M
B

Doc. 16 a.Champ magnétique sur un
plan de symétrie.

�

M BM'

B'

Doc. 16 b. Champs en deux points symé-
triques.



4.2. Antisymétrie plane

Pour une distribution $ possédant un plan d’antisymétrie � * , et pour un point M
appartenant à ce plan, il suffit de changer le sens du champ élémentaire dB

→

P’ dans
les raisonnements précédents. Par conséquent (doc. 20 a) :

Plus généralement (doc. 20 b) :

Exemple : Considérons une spire circulaire d’axe (Oz) parcourue par un courant
I. Les lignes de champ seront dans des plans contenant l’axe (Oz) qui sont des
plans-antimiroirs de cette distribution. Nous choisirons donc le plan (xOz) pour
représenter quelques lignes du champ magnétique de la spire (doc. 12), dont nous
pouvons ainsi illustrer les propriétés lors d’opérations de symétrie plane.

Au point M’ symétrique du point M par rapport au plan-antimiroir �*, le
champ magnétique B’

→

est le symétrique du champ B
→

en M .

Le champ magnétique B
→

est contenu dans un plan-antimiroir �* en chacun
de ses points.
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7. Champ magnétique

Transformation du produit vectoriel
de deux vecteurs

Considérons le trièdre trirectangle direct des trois vec-
teurs unitaires (e 1

→ , e 2
→ , e 3

→) pour lequel
e 3
→

�e 1
→ � e 2

→ (doc. 17).

1) Construire le trièdre de vecteurs (e ’1
→

, e ’2
→

, e ’3
→

)
obtenu par la rotation du précédent trièdre d’un angle
égal à π autour de l’axe (Oz). La rotation a-t-elle conservé
les propriétés du trièdre initial ?

2) Reprendre l’étude précédente en considérant l’opé-
ration de symétrie plane par rapport au plan (xOz) qui
conduit au trièdre (e’’1

→

, e’’2
→

, e’’3
→

). Conclusion ?

1) La construction est représentée sur le document 18.
Nous pouvons constater que le trièdre (e ’1

→

, e ’2
→

, e ’3
→

)
est un trièdre orthonormé direct. Les rotations conservent
le produit vectoriel : 5 (e1

→

� e 2
→

) = 5 (e 1
→

) � 5 (e 2
→

).

2) Pour l’opération de symétrie plane, qui transforme
encore le point M en M”, nous remarquons que le tri-
èdre (e ’’1

→

, e ’’2
→

, e ’’3
→

) est orthonormé, mais indirect.
L’opération de symétrie plane inverse le produit vecto-
riel (doc. 19) : S (e1

→

� e 2
→

) = – S (e 1
→

) � S (e 2
→

).

Le champ magnétique donné par la loi de Biot et Savart fait
intervenir le produit vectoriel de deux vecteurs polaires. Ceci
explique le comportement particulier du champ magnétique
lors d’opérations de symétrie plane.

Application 4

M

x y

z

e1

e2

e3

M'
e"1

e"2

e"3

Doc. 19.

M

x y

z

e1

e2

e3

M'
e'1

e'2

e'3

Doc. 18.

M

x y

z

e1

e2

e3

Doc. 17.

�

MM'

BB'

*

Doc. 20 b. Champs en deux points symé-
triques.

�

M

B

*

Doc. 20 a.Champ sur un plan d’antisy-
métrie.



• Les plans contenant l’axe (Oz) de la spire sont des plans-antimiroirs.
Sur l’axe (Oz), le champ magnétique est parallèle à e z

→ . Cette observation est en

accord avec la valeur B
→

(M) � sin3a . e z
→ (*) que nous avons déjà calculée

(cf. Application 3).
Au point M’ (x, 0, z) symétrique du point M (– x, y, z) par rapport au plan-
antimiroir (yOz), le champ magnétique B’

→

est le symétrique du champ B
→

par rapport
à ce plan.

• Le plan (xOy) de la spire est un plan-miroir.
Sur le document 12, les lignes de champ coupent l’axe (Ox) perpendiculairement.
Le champ est identique aux points A (0, 0, z 0 ) et A’ (0, 0,�z 0 ) (ce qui revient
à changer a en π �a dans l’expression (*)).
Au point M’’ (x, 0, �z) symétrique du point M (x, 0, z), le champ B’’

→

est l’op-
posé du symétrique de B

→

par rapport à (xOy) .

4.3. Invariance par translation
Lorsqu’une distribution $ est invariante par une translation de � z parallèlement
à l’axe (Oz), un observateur percevra la même distribution s’il est au point de
coordonnées cartésiennes (x, y, z) ou en un point translaté du précédent de coor-
données (x, y, z �n � z), où n est un entier. Le champ sera donc identique en ces
deux points (doc. 21) : B

→

(x, y, z �n �z) �B
→

(x, y, z) . Ce n’est possible que pour
les distributions illimitées dans la direction de la translation.
Pour une distribution invariante par (toute) translation selon la direction de l’axe (Oz),
le champ magnétique sera de la forme B

→

(x, y, z) �B
→

(x, y) .

4.4. Invariance par rotation
Pour une distribution $ invariante par une rotation 5 d’angle a � (n entier)

autour de l’axe (Oz), deux observateurs placés en M et M’ � 5 (M ) percevront la
même distribution (doc. 23).

Le champ au point M’ est le même qu’au point M, à une rotation autour de e z
→

d’angle � près.

Remarque : Ce résultat est à rapprocher de l’étude faite dans l’Application 4, une
rotation conserve le produit vectoriel.
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Champ magnétique
d’une distribution de courants plans

Déterminer la forme du champ magnétique créé par des
courants plans :

j
→

(x, y, z) �j x (x, y) e x
→

�j y (x, y) e y
→ .

Tout plan perpendiculaire à l’axe (Oz) est un plan-miroir
de la distribution (doc. 22), le champ magnétique est
parallèle à e z

→ . La distribution étant invariante par trans-
lation parallèlement à ce vecteur, nous aurons donc :

B
→

(x, y, z)�B (x, y) e z
→ .

Application 5
z

z'

�

�

B

B B

Doc. 22.

B (M)

Ox

(Oy)

Oy

Oz

M

M'

B (M')

�

�

(Ox)�

Doc. 23. Invariance par rotation avec
n �6 .

�

M'
M

z

B

B

∆z ez

Doc. 21. Invariance par translation dis-
crète
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7. Champ magnétique

4.5. Le champ magnétique est un vecteur axial

Les études précédentes nous amènent à une conclusion simple : lors d’une symétrie
plane appliquée à la distribution de courants $ , le champ magnétique subit la même
symétrie avec en plus un changement de signe.

Les opérations de symétrie, telles qu’une rotation autour d’un axe ou une transla-
tion, peuvent être vues comme le produit de deux symétries planes, ce qui a pour
effet de supprimer le changement de signe.

Nous appelons vecteur axial un vecteur dont le champ a cette propriété.

Le vecteur champ magnétique est un vecteur axial à cause du produit vectoriel que
l’on trouve dans l’expression de la loi de Biot et Savart. Il est facile de vérifier (cf.
Application 4) que, pour une symétrie par rapport à un plan P :

S (u→ � v→) = – S (u→) � S ( v→) .

Pour qualifier cette propriété, nous trouvons aussi le terme « pseudo-vecteur »,
par opposition à un « vecteur-vrai » qui, comme le champ électrique, a les mêmes
propriétés de symétrie que ses sources.

Le champ magnétostatique est un objet tridimensionnel qui a les propriétés
de symétrie d’un vecteur axial ou « pseudo-vecteur ».

Cela signifie que si les courants qui le créent subissent une symétrie plane par
rapport à un plan, alors B

æÆ

subit une antisymétrie par rapport au même plan.

Champ d’une distribution
de courants axisymétriques

Déterminer la forme du champ magnétique engendré
par une distribution axisymétrique :

j
→

�j r (r, z) e r
→

�j z (r, z) e z
→ .

Tout plan méridien est un plan-miroir � ; le champ
magnétique en M est donc orthoradial :

B
→

(M ) �B� (r, �, z) e �
→ .

La distribution étant de plus invariante par toute rotation
d’axe (Oz), nous pouvons simplifier encore la forme du
champ B

→

(M ) �B� (r, z) e �
→ .

Application 6
z �

z'

j�

B B

Doc. 24. Courants axisymétriques.

Toute isométrie (transformation géo-
métrique qui laisse invariantes les
distances) peut se mettre sous la
forme d'un produit de n symétries
planes.

• Si n est impair, l’isométrie est dite
négative.

• Si n est pair, l’isométrie est dite
positive.

Un vecteur polaire et un vecteur
axial se distinguent par la transfor-
mation qu’ils subissent lors d’une
isométrie négative.



� Pour s’entraîner : ex. 1 et 2.

Flux du champ magnétique5
5.1. Le flux magnétique est conservatif

5.1.1. Flux du champ attribué à un élément de courant

Envisageons un élément de courant dC
→

�dC . e z
→ . Au point M de coordonnées

cylindriques (r, �, z), le champ attribué à cet élément vaut :

dB
→

(M) � e z
→ � e→q .

Les lignes de ce champ élémentaire sont des cercles centrés sur l’axe (Oz).
L’invariance par rotation autour de cet axe assure que dB

→

.e �
→ reste constant sur

un tel cercle.

Le tube de champ correspondant aux lignes s’appuyant sur une section droite d’aire
dS� est un tore. Le flux du champ élémentaire dB

→

est le même à travers toutes les
sections de ce tore et vaut (dB

→

.e�
→) dS� .
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7. Champ magnétique

Calculer le champ magnétique créé au point O par deux
spires circulaires d’axe (Oz) et de rayon R,
parcourues par deux courants opposés �I et �I et cen-
trées aux points d’abscisses z0 et �z0 de part et d’autre
du point O .
Le document 25 représente les lignes de champ de cette
configuration dans un plan contenant l’axe (Oz) .

Tout plan contenant l’axe (Oz) est plan-antimiroir �* de
la distribution de courants. Au point O, le champ magné-
tique est dirigé selon e z

→ .
Le plan (xOy) est aussi un plan-antimiroir puisque les
courants parcourant les spires sont opposés, donc B

→

(O)
est contenu dans ce plan.
En conséquence, le champ magnétique au point O est
nécessairement nul.

Application 7
Champ au centre d’un système de deux bobines « opposées »

x

O
y

z

Doc. 25 a.Champ magnétique de deux spires en oppo-
sition.

O

B 2

B 1

Btotal

1

2

z

O

Bz

Doc. 25 b. Allure de Bz créé par le système de cou-
rants.

surface S
fermée

tube
de champ
de section
constante

n

lignes de champ
circulaires de dB
créées par dC

d C

dB(M)

M
r

a

y

z

Doc. 26. Lignes de champ traversant
une surface fermée.



Observons sur le document 26 les lignes du champ dB
→

traversant une surface fer-
mée S . Un tube torique de champ découpe sur S un nombre pair de sections (dans
le cas simple représenté ce nombre est deux). Les contributions des flux
« entrant dans S » et « sortant de S » sont identiques, au signe près.

Le flux du champ magnétostatique dB
→

à travers une surface fermée S est nul.

5.1.2. Généralisation

Pour une distribution de courants $ , le champ magnétique B
→

en M résulte de
la superposition de champs élémentaires dB

→

, d’après la loi de Biot et Savart.

La propriété précédente sera ainsi valable pour le champ total créé par la distribu-
tion. Nous pouvons donc affirmer que :

Rappelons que cela implique que le flux du champ magnétique est le même à travers
toute section d’un même tube de champ (doc. 27) :

Nous verrons ultérieurement que cette propriété reste valable, que le régime étu-
dié soit indépendant du temps ou variable.

Remarque

Nous avons vu que les lignes du champ magnétique attribuées à un élément de courant
sont des cercles, elles sont donc fermées. Il en est de même pour un fil rectiligne infini
(cf. exercice 5), ou pour une spire circulaire (cf. doc. 12 et 25). Nous pourrons admettre
la généralisation de cette propriété à des champs magnétiques créés par des distribu-
tions quelconques. Ce comportement différencie encore fondamentalement un champ
magnétostatique d’un champ électrostatique. Cette propriété est liée au fait que B

→

est toujours à flux conservatif, alors que E
→

n’est à flux conservatif que dans les
régions vides de charges.

Le champ magnétique est à flux conservatif.

Le flux du champ magnétique sortant d’une surface fermée est nul.
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7. Champ magnétique

�1

�2

S2

S1

n1

n2

Doc. 27. Le flux de B
→

à travers deux sur-
faces S 1 et S 2 s’appuyant sur un
même tube de champ ne dépend pas du
choix de ces surfaces � 1 �� 2 .

Champ au voisinage de l’axe de révolution
d’une distribution de courants annulaires

Déterminer, à l’ordre un en r (distance à l’axe de révo-
lution (Oz)), l’expression de la composante radiale du
champ magnétique au voisinage de l’axe de révolution
d’une distribution annulaire de courants.

Tout plan méridien contenant l’axe de révolution (Oz )
est un plan d’antisymétrie de la distribution de courants
contenant le champ magnétique. Donc, sur l’axe (Oz )
le vecteur champ magnétique est colinéaire (Oz) :

B
→

axe(z) = Baxe(z) e→z .

Notons M le point de coordonnées cylindriques (r, q, z).
Le plan méridien contenant le point M et l’axe (Oz)
contient B

→

(M), donc Bq (r, q, z) = 0.

Comme la distribution possède la symétrie de révolu-
tion autour de l’axe (Oz), il vient en outre :

B
→

(r, q, z) = Br(r, z) e→r + Bz(r, z) e→z .

Cela étant, considérons un cylindre d’axe (Oz), à bases
circulaires de rayon r dans les plans de cotes z et z + dz .

Écrivons que le flux magnétique à travers ce cylindre
est nul :

πr2Bz(r, z + dz) – πr2Bz(r, z)

+ 2πr dz(Br(r, z) + …) = 0

Application 8
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7. Champ magnétique

5.2. Un exemple de canalisation du flux magnétique :
le solénoïde

5.2.1. Champ de quelques spires
5.2.1.1. Champ d’une spire

Rappelons les résultats obtenus dans l’Application 3.

Le document 29 représente des lignes du champ d’une spire circulaire d’axe (Oz)
dans un plan contenant cet axe.

Par rotation de l’une de ces lignes autour de l’axe de la spire, nous pouvons obtenir un
tube de champ magnétique dont les sections perpendiculaires à (Oz) sont circulaires.
Considérons ce tube en pensant à la conservation du flux magnétique le long de
celui-ci :

Le champ magnétique d’une spire circulaire sur son axe est :

B
→

(M ) ��0 sin3 a .e z
→ .

Au centre de la spire, ce champ est : B
→

(O) � �0 e z
→ .

d’où : Br(r, z) = .

Nous pourrons démontrer ultérieurement, à l’acide du
théorème d’Ampère, qu’à l’extérieur de la distribution
de charges nous avons : Bz(r, z) = Bz(0, z) = Baxe(z) .

En définitive :

B
→

(r, q, z) = Bz(0, z) e→z – e→r .

Doc. 28. �

O

z

z + dz

distribution
de courants
annulaires

z
M

nBaxe(z)
nBz(M )

nBr(M )

nB(M )

z

Doc. 29. Lignes de champ magnétique d’une spire.

z

B

O

Baxe(z)

Doc. 30. Champ sur l’axe d’une spire.



• le tube est resserré lorsqu’il traverse la spire, qui sert de goulet d’étranglement
canalisant le flux magnétique qui est intense dans cette zone ;

• en s’éloignant de la spire, le tube s’évase rapidement, ce qui laisse prévoir une
diminution rapide de l’intensité du champ ;

• le tracé de B z (axe) � sin3 a � en fonction de z sur le docu-

ment 30 confirme ces considérations qualitatives.

5.2.1.2. Amélioration de la canalisation du flux

Pour augmenter le champ et étendre la zone de concentration de son flux, nous pouvons
songer à associer plusieurs spires de même axe parcourues par des courants de
même sens (nous avons vu précédemment (doc. 25) que deux spires en regard
parcourues par des courants opposés ne produisaient pas l’effet souhaité).

Les documents 31 à 33 rendent compte de l’association de deux, cinq puis dix spires
identiques et régulièrement espacées.

5.2.2. Lignes de champ du solénoïde

Poursuivant l’étude précédente, nous pouvons envisager un circuit obtenu par enrou-
lement régulier d’un fil conducteur sur un cylindre d’axe (Oz), les N tours de fil de

même rayon R occupant une longueur totale 	 . En pratique, le nombre n �

de tours de fil par unité de longueur est élevé, et nous pouvons l’assimiler à un ensemble
de spires d’axe (Oz) quasi jointives et de rayon R.

Le circuit obtenu est un solénoïde (du grec solên : étui, tuyau) à section circulaire
et à une couche (nous pourrions envisager plusieurs épaisseurs d’enroulement).

Observons le document 34, qui présente quelques lignes de champ d’un solénoïde
(à N �21 spires très proches) dans un plan contenant (Oz) :

• le solénoïde canalise les lignes de champ magnétique ;

• les lignes de champ s’écartent tellement vite dès leur sortie du solénoïde que nous
pouvons prévoir une atténuation très rapide du champ à l’extérieur du solénoïde, où
il doit être négligeable devant le champ à l’intérieur du solénoïde.
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7. Champ magnétique

z

Doc. 31a. Lignes de champ magnétique d’un ensemble de
deux spires parcourues par des courants identiques.

B total

O

B(z)

z
B créé par chacune

des deux spires

Doc. 31b. Allure de B(z) dans le cas de deux spires parcou-
rues par des courants identiques.
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7. Champ magnétique

z

Doc. 33 a. Lignes de champ magnétique d’un ensemble de
dix spires parcourues par des courants identiques.

B total

B(z)

z

Doc. 33 b. Allure de B(z) dans le cas de dix spires parcou-
rues par des courants identiques.

z

Doc. 34 a. Lignes de champ magnétique d’un ensemble de
vingt et une spires régulièrement réparties et parcourues par
des courants identiques.

B total

z

place
des

spires

B(z)

Doc. 34 b. Allure de B(z) pour un solénoïde constitué de vingt
et une spires régulièrement réparties et parcourues par des
courants identiques.

z

Doc. 32 a. Lignes de champ magnétique d’un ensemble de
cinq spires parcourues par des courants identiques.

z

B des diverses
spires

B total

B(z)

O

Doc. 32 b. Allure de B(z) dans le cas de cinq spires parcou-
rues par des courants identiques.
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7. Champ magnétique

5.2.3. Champ sur l’axe du solénoïde

Tout plan contenant l’axe du solénoïde est un plan d’antisymétrie, donc sur l’axe
le champ est de la forme B

→

axe �B axe (z) e z
→ . Le champ créé en un point M de

cote z M de l’axe par une spire de cote z P � z M �R cotana parcourue par le

courant I est sin3 a (doc. 35 a).

Celui créé par les spires de cote comprise entre zP et zP �dzP ,

au nombre de ndzP , vaut :

sin 3 a �� sin a da = d(cosa).

Notant a 1 et a 2 les angles extrêmes (compris entre 0 et π) sous lesquels les
extrémités du solénoïdes sont vues depuis le point M (doc. 35 b), nous obtenons
le champ magnétique total sur l’axe du solénoïde :

B
→

axe � � 0 n I e z
→ .

Le tracé de la valeur du champ sur l’axe (z’z) en fonction de z (doc. 36) montre que
le champ magnétique est pratiquement uniforme à l’intérieur du solénoïde et
devient rapidement négligeable à l’extérieur.

5.2.4. Limite du solénoïde infini

Pour un solénoïde très long, c’est-à-dire lorsque le rapport est très grand (idéa-
lement infini), a 1 tend vers π et a 2 tend vers 0 .

Nous verrons au chapitre 8, que lorsque la limite tend vers ∞ , le champ est

uniforme, égal à � 0 n I e→z , en tout point à l’intérieur du solénoïde, et il est nul à
l’extérieur.

Le champ magnétique sur l’axe d’un solénoïde infiniment long uniforme
et comportant n spires par unité de longueur vaut :

B∞
→

��0nI e z
→ .

L’approximation de la nappe solénoïdale
de courant

Les spires étant quasi jointives et en nombre important
par unité de longueur, montrer que le solénoïde peut être
assimilé à une nappe cylindrique de courants annulaires
et de densité surfacique de courants jS

→

à préciser.

Nous considérons comme négligeable l’erreur commise en
remplaçant la distribution filiforme de courants par une

distribution surfacique équivalente qui sera de la forme
jS
→

�jS e �
→ (en coordonnées cylindriques d’axe (Oz)).

Considérons un élément d z coupant normalement les
spires. L’intensité le traversant est d I �nd z .I pour la
schématisation discrète, et dI � jSdz pour la schéma-
tisation surfacique équivalente.

L’opération de nivelage proposée consiste donc à sub-
stituer au solénoïde la nappe de courant de densité sur-
facique jS

→

� n Ie �
→ .

Application 9

P

O1 O2M
�

z

Doc. 35 a.

0– 1 1 2– 2

0,2

0,4

0,6

0,8

1,0

Baxe (z)/Baxe (0)

z/z0

Doc. 36. Solénoïde aux extrémités d’abs-
cisses �z 0 et z 0 .

O1

2
O2M zz'

�
1�

Doc. 35 b.
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7. Champ magnétique

C Q F R
● LOI DE BIOT ET SAVART
Toute distribution de courants peut s’analyser comme une distribution de courants filiformes dont la caractéristique
locale est l’élément de courant dC

→

.

Nous postulons que l’expression de la contribution d’un élément de courant d C
→

, situé au point P, au champ total
B
→

(M) créé en M par une distribution de courants est donnée par la loi de Biot et Savart :

dB
→

(M ) � dC
→

� dC
→

� .

Le champ résultant B
→

(M) est la somme des contributions élémentaires avec d C
→

� j
→

d � ou d C
→

� j
→

S d S ou
dC

→

� Id	
→

selon les cas.

Le coefficient m0 , dimensionné, vaut exactement m0 = 4π . 10–7 H . m–1 (H désigne le henry, unité d’inductance).

L’unité de champ magnétique est le tesla (symbole : T).

● SYMÉTRIE PLANE

Le champ magnétique B
→

est perpendiculaire à un plan-miroir P en chacun de ses points.

Au point M’ symétrique d’un point M par rapport à un plan-miroir P , le champ magnétique B’
→

est l’opposé du symé-
trique du champ B

→

en M par rapport à ce plan.

● ANTISYMÉTRIE PLANE

Le champ magnétique B
→

est contenu dans un plan-antimiroir P* en chacun de ses points.

Au point M’ symétrique du point M par rapport au plan-antimiroir P*, le champ magnétique B’
→

est le symétrique
du champ B

→

en M .

● Le vecteur champ magnétostatique est un objet tridimensionnel ayant les propriétés de symétrie d’un vecteur axial
ou pseudo-vecteur.

● FLUX MAGNÉTIQUE

Le flux du champ magnétique sortant d’une surface fermée est nul.

Le champ magnétique est à flux conservatif.

● SOLÉNOÏDE

Le champ magnétique d’une spire circulaire sur son axe est : B
→

(M) �m 0 sin3 a .ez
→ .

Au centre de la spire, ce champ est : B
→

(O) � m 0 e z
→ .

Le champ magnétique sur l’axe d’un solénoïde infiniment long et comportant n spires par unité de longueur vaut :

B
→

∞ � m 0 n I e z
→ .
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Avez-vous retenu l’essentiel ?

✔ Définir un élément de courant dC
→

. En quelle unité s’évalue-t-il ?

✔ Énoncer la loi de Biot et Savart et construire le vecteur champ élémentaire d B
→

(M).

✔ Montrer, à l’aide d’un schéma simple, que le champ magnétique est perpendiculaire à un plan-miroir P en cha-
cun de ses points.

✔ De même, montrer, à l’aide d’un schéma simple, que le champ magnétique est contenu dans un plan anti-miroir
P* en chacun de ses points.

✔ Justifier que le champ magnétique est un champ à flux conservatif.

✔ Retrouver l’expression du champ B
→

(M) créé en un point de son axe par une spire circulaire de rayon R par-
courue par un courant I .

✔ Établir l’expression du champ sur l’axe d’un solénoïde infiniment long parcouru par un courant I et comportant
n spires par unité de longueur.

Du tac au tac (Vrai ou faux)

Contrôle rapide

1. Les lignes de champ magnétique sont des lignes
fermées.

❑ Vrai ❑ Faux

2. Le flux du champ magnétique à travers une sur-
face fermée n’est nul que dans les régions vides
de courants.

❑ Vrai ❑ Faux

3. La translation, la rotation et l’antisymétrie par
rapport à un plan sont des isométries qui lais-
sent invariante l’orientation d’un trièdre.

❑ Vrai ❑ Faux

4. Une symétrie par rapport à un plan change
l’orientation d’un trièdre.

❑ Vrai ❑ Faux

5. Le champ magnétique s’évalue en weber.

❑ Vrai ❑ Faux

6. Le champ élémentaire dBmm (M) créé par un
élément de courant dCmm a une réalité physique :
il est mesurable.

❑ Vrai ❑ Faux

7. Le coefficient m0 est sans dimension.

❑ Vrai ❑ Faux

8. La loi de Biot et Savart est valable en régime
permanent comme en régime variable.

❑ Vrai ❑ Faux

9. Si un système S possède un plan de symétrie
P alors, pour un champ de vecteurs polaires
ukk(M) créé par S, il vient :

ukk(S(M)) = S(ukk(M))

tandis que pour un champ de vecteurs axiaux
vkk(M) créé par cette même distribution :

vkk(S(M)) = – S(vkk(M)).

❑ Vrai ❑ Faux

� Solution, page 137.
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7. Champ magnétique

Produit vectoriel et symétrie plane

En notant S la symétrie par rapport à P, rappelons que :

• pour un champ uk(M) de vecteurs polaires :

uk(S(M) = S(uk(M)) ;

• pour un champ vk(M) de vecteurs axiaux :

vk(S(M)) = – S(vk(M)) ;

• pour un champ défini par un produit vectoriel :

wk(M) = wk1(M) � wk2(M) où : wk1(M) et wk2(M)

sont des vecteurs polaires ou axiaux :

wk (S(M)) = – S(wk(M)).

1) Cela étant, considérons un système S possédant un plan
de symétrie P et une loi physique, applicable à ce système,
de la forme ck(M) = ak(M) � bk(M) où ak(M) est un champ de
vecteurs polaires et bk(M) un champ de vecteurs axiaux.

Quelle est la nature (polaire ou axiale) du champ de vecteurs
ck(M) ? Citer un exemple de loi de ce type.

2) Quelle est la nature (polaire ou axiale) du champ de vec-
teurs ck(M) si ak(M) et bk(M) sont deux champs de vecteurs
axiaux ?

Trajectoire et force de Lorentz

Étant donné une distribution de courants présentant un plan
de symétrie P et une particules M (q, m) décrivant une tra-
jectoire L dans le champ magnétique créé par cette distribu-
tion. Montrer qu’il est possible d’observer une particule iden-
tique M’ décrivant la trajectoire symétrique L’ avec une
vitesse symétrique vk(M’ ) = S (vk(M)) en des points symé-
triques.

Disque de Rowland

Ce physicien américain d’une habilité expérimentale hors du
commun fut le premier à démontrer qu’un courant électrique,
quel qu’il soit, crée un champ magnétique. Le principe très
simplifié de l’expérience est le suivant.

Un disque métallique de rayon R, portant une charge élec-
trique répartie avec la densité surfacique uniforme � (sur l’en-
semble des deux faces) tourne à la vitesse angulaire constante
! autour de son axe (Oz).

Calculer le champ magnétostatique créé par ces courants de
convection en un point M de l’axe (Oz).

Données : � �5 .10� 6 Cm� 2 ; R � 10,5 cm ; z � 2 cm ;
! � 61 tr .s� 1.

Sphère recouverte de spires

Une sphère de rayon R est recouverte d’un nombre élevé N de
spires parcourues dans le même sens par un courant d’intensité
I . Calculer le champ magnétique créé par cette distribution de
courants au centre O de la sphère dans les deux cas suivants :

1) les spires sont jointives ;

2) les plans des N spires sont équidistants (spires non jointives)
suivant (Oz) .

Champ de courants rectilignes

Un circuit, fermé à l’infini, comprend trois parties rectilignes :
A’1∞ A1, A1A2 et A2A’2∞ . On note I l’intensité de ce cir-
cuit.

x

y

z
M

!

!!

�

z

x

y

�

�

I I

d

z

x

y
�

�

I I

d
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1) Déterminer le champ Bn(M)
créé par ce courant en un point
M situé à la distance r de la
portion A1A2 et à l’intersec-
tion des demi-droites A’1∞A1
et A2 A’2∞ .

2) En déduire le champ
B∞(M) créé en M par un fil
rectiligne indéfini. Identifier
les lignes de champ de ce cou-
rant.

3) On note L la longueur de
la portion A1A2 et on consi-
dère un point M sur le plan médiateur de A1A2 . À quelle
distance maximale rmax du fil doit se trouver M pour que
la norme du champ ||BLm (M)|| créé par le fil diffère de moins
de 1 % de ||B∞m (M)|| ?

Courant angulaire

Montrer que le champ magnétique créé par un circuit filiforme
« angulaire » parcouru par un courant d’intensité I au point
M de l’axe (Ox) bissecteur est donné par :

B
→

(M ) �� tan e→z

dans le cas x � 0 (point M ). Qu’obtient-on dans le cas x � 0
(point M’) ?

Champ magnétique
créé par un courant filiforme

Calculer le champ magnétique créé au point O, centre du
rectangle ABCD, dans chacun des deux cas suivants. Chaque
demi-cercle a pour rayon a. On posera DA �BC � 2l .
L’intensité du courant est I .

Composante axiale
du champ magnétique créé par une hélice

Soit une hélice de rayon R et de pas a, parcourue par un cou-
rant d’intensité I . On néglige les contributions des fils d’ame-
née du courant au champ magnétique en un point M .

Calculer la composante Bz du champ magnétique en un point
de l’axe (Oz) de l’hélice. On désignera par a 1 et a 2 les

angles que font, avec l’axe (Oz), les vecteurs MP
→

1 et MP
→

2 ,
P1 et P2 étant les deux points extrémités de l’hélice.
Commenter le résultat.

Bobines de Helmholtz

Deux bobines circulaires, de même axe (Ox) et de même rayon
R , comportent chacune N spires parcourues par un courant
d’intensité I de même sens. Les centres O1 et O2 des
bobines ont respectivement pour abscisses – a et a .
1) Calculer le champ créé par ces bobines en un point M situé
sur l’axe (Ox) et voisin de O.
2) Déterminer a pour que le champ soit le plus uniforme pos-
sible au voisinage de O sur l’axe (Ox).

M
r

I

O

A2

A2∞

A1∞

a2

a1

A1

y

z x
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7. Champ magnétique

1) En utilisant les propriétés caractéristiques des différents champs de

vecteurs, il vient :

ck(S(M)) = ak(S(M)) � bk(S(M)) = S (ak(M)) � (– S (bk(M)))

= – [S(ak(M)) � S(bk(M)] = – [– S (ak(M) � bk(M))]

= S(ck(M)).

Le vecteur ck(M) est un vecteur polaire.

La force de Laplace dFk(M) = dCk(M) � Bk(M) appliquée à un élément de courant
dCk (M) (vecteur polaire) placé dans un champ magnétique Bk(M) (vecteur axial) est
un vecteur polaire.

2) En reprenant le même principe de démonstration, nous pouvons écrire :

ck(S(M)) = ak(S(M)) � bk(S(M)) = [– S (ak(M))] � [– S (bk(M))]

= S (ak(M)) � S(bk(M)) = – S (ak(M) � bk(M))

= – S (ck(M)).

Le vecteur ck(M) est alors un vecteur axial.

Soit L’ la trajectoire symétrique de L par rapport au plan (� ), plan de symétrie des
courants créant B

→

. Pour que L’ soit décrite, il faut que F
→

(M’) �6 (F
→

(M)) , c’est-
à-dire que F

→

soit un vecteur polaire. Or le vecteur vitesse est un vecteur polaire et
B
→

un vecteur axial. L’intervention du produit vectoriel (cf. exercice 1) implique que
F
→

est bien un vecteur polaire.
La trajectoire L’ peut donc être décrite par une particule de même charge.

Le disque tournant est une superposition continue de spires. Une spire de

rayon r et de largeur d r est, du fait de la rotation, le siège d’un courant d’intensité
d I
→

�jS d r � � (r!) d r . Elle crée en M le champ magnétostatique :

d B
→

� sin3 � . e
→

z .

Sachant que r � z tan � , soit d r � d � , nous obtenons le champ B
→

(M)

par intégration de � entre 0 et � max �cos � max � � :

B
→

� e
→

z

� e
→

z .

Soit : B
→

(M) � e
→

z .

La valeur numérique de la norme de ce champ est B �8,5 .10� 11 T . Cette valeur
est très faible et ce champ est noyé dans la composante selon (Oz) du champ magnétique
terrestre (de l’ordre de quelques 10� 5 T). Rowland est néanmoins parvenu, grâce à
un jeu d’aiguilles aimantées (en montage astatique), à prouver l’existence de ce champ.

1) Spires jointives

Le nombre de spires par unité de longueur est donné par n� . Le nombre de

spires étant élevé, nous sommes en présence d’une répartition surfacique uniforme de
courants j S

→

�n I e
→

 .

L’ensemble des plans contenant (Oz) sont des plans d’antisymétrie des courants,
donc B

→

(O) est porté par (Oz) .

B
→

(O) � sin3 � d� . e
→

z ,

car chaque « spire » vue sous un angle d� est parcourue par un courant jS R d � .

B
→

(O) � e
→

z .

2) Spires équidistantes (non jointives)
Le nombre de spires situées entre deux plans de cotes z et z �d z est donné par

n’d z � d z . La densité surfacique de courants équivalente est donc égale à

jS’
→

�n’I sin � e
→

 , car jS’Rd� �n’I dz avec z �R cos � , soit dz�R sin � d� .

Un calcul identique au précédent nous donne :

B
→

’ (O) � sin3 � d� . e
→

z , soit B
→

’ (O) � e
→

z .

1) Remarquons que chacune des portions A’1∞A1 et A2 A’2∞ créent en M un

champ nul, puisque leurs éléments de courant dCk(P) sont colinéaires à PMo. Le champ

en M est donc dû uniquement à la portion A1A2 . Le plan défini par le courant A1A2 et

le point M est un plan de symétrie du courant, donc Bk(M) est orthogonal à ce plan. Ce

champ, colinéaire à eθn , se calcule à l’aide de la loi de Biot et Savart :

dBk(M) =

avec :

OPk = r tan a ezn donc dPk = da ezn , PM = et ezn ∧ ePMm = cos a eqn .

Solution du tac au tac, p. 134.
1. Vrai
2. Faux
3. Vrai
4. Vrai

5. Faux
6. Faux
7. Faux
8. Faux
9. Vrai

�

M'

L' L

M

V (M')

B (M')

B (M) V (M)

F (M') F = qV � B

q > 0
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Après simplification, il vient : dBk(M) = cosa da

d’où finalement :

Bk(M) = .

2) Dans le cas d’un fil rectiligne indéfini, a1 = – et a2 = , il en résulte que :

Bk(M) = .

Le champ n’est pas défini sur le courant et il s’annule à l’infini dans une direction per-
pendiculaire au courant. Les lignes de champ de ce courant sont des cercles dont l’axe est
le courant rectiligne.

3) En considérant que : a2 = – a1 = a , on obtient immédiatement :

BLm (M) = sina eqn = B∞(M) eqn .

La distance maximale cherchée est déterminée par :

= 0,99

d’où : rmax = L = 7,1 . 10–2 L .

Le plan contenant les deux fils et le

point M est un plan de symétrie des courants,

donc B
→

(M ) est perpendiculaire à ce plan :

B
→

(M ) �B e
→

z .

Le champ B
→

(M ) créé par un segment por-
tant un courant I est donné par :

Soit B
→

(M ) � e
→

z (sin a 2�sin a 1)

(cf. exercice 5).

Les champs magnétiques créés par le fil 1 et le fil 2 sont identiques.

Sachant que a�x sin  , a 1 � � et a 2 � , nous obtenons :

B
→

(M ) � (� e
→

z )

� . e
→

z .

Pour le calcul de B
→

(M’) , nous utilisons a2 �� � � , a1 � – et a ��x sin  ,

soit : B
→

(M’ ) � e
→

z (x � 0) �� e
→

z(x � 0) .

1) Les plans (xOz) et (yOz) (contenant le point O) sont des plans d’antisymétrie des
courants, donc B

→

(O) est suivant leur intersection : B
→

(O) �B e
→

z .

• B
→

(BC ) � B
→

(DA) � 2 sin � e
→

z , avec sin � � ;

• e
→

z . B
→

(AB) � e
→

z . B
→

(CD) et B
→

(AB) . e
→

z � e
→

z .

Sachant que :

OP
→

��a cos  e
→

x � 	 e
→

y � a sin  e
→

z ,

d P
→

� (a sin  e
→

x � a cos  e
→

z ) d  et

OP
→

�d P
→

�(a	 cos  e
→

x
�a 2 e

→

y � al sin  e
→

z ) d  ,

nous obtenons :

B
→

(AB) . e
→

z � .

Soit B
→

(O) � e
→

z .

2) Utilisons le document 2 de l’énoncé.

• Nous avons toujours B
→

(BC) � B
→

(DA) � e
→

z .

• À tout point P de AB , nous pouvons associer un point P’ de CD tel que
OP
→

��OP’
→

et d P
→

�� d P’
→

, d’où B
→

(AB) � B
→

(CD) .
Le plan (yOz) est un plan d’antisymétrie de ces courants suivant AB et CD, donc B

→

est dans ce plan.

M
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P

O
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ne0
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7. Champ magnétique

B
→

(AB) � e
→

z + e
→

y

� 2 e
→

z � π e
→

y .

Le vecteur induction magnétique total est donc égal à :

B
→

(O) � .

Pour 	 �0 , nous retrouvons le vecteur induction magnétique d’une spire en son centre.

Soit une hélice finie de pas a sur un cylindre de rayon R. Repérons un point

P sur l’hélice de la manière suivante :

zP �zM � (zP � zM si � � 0) .

Le vecteur B
→

(M ) est donné par :

B
→

(M ) � ,

avec MP
→

�R e
→

r �(zP �zM) e
→

z .

Soit d P
→

� R d � e
→

� � d � e
→

z

et d P
→

� PM
→

� �� e
→

r � e
→

� � R 2 e
→

z� d � .

La projection de B
→

(M ) sur (Oz) est donnée par :

B
→

(M ) . e
→

z � .

Appelons a l’angle (Oz
→

, MP
→

) compris
dans le domaine [O ; π]. Nous avons :

z P �z M �

et � � (z P �z M) � ,

soit d � �� .

Ce qui nous donne :

B
→

(M ) . e
→

z �

� .

Sachant que peut être assimilé à un nombre de spire par unité de longueur

suivant (Oz) , nous obtenons B z � (cos a 2 �cos a 1) , expression du champ

créé par une nappe solénoïdale en un point de l’axe. Mais pour l’hélice, Bx et By ne
sont pas nuls.

1) Le champ créé par une bobine en un point M de son axe est de la forme

Bk(M) = B0 sin3j exn , où B0 = est le champ en son centre et j est l’angle

sous lequel on voit le rayon de la bobine du point M . Pour les deux bobines le champ,

en un point M d’abscisse x , s’écrit :

Bk(x) = B0 .

Notons f (x) = , il vient :

Bk(x) = B0 [f (x) + f (– x)] e
→

x .

Faisons un développement limité à l’ordre trois de l’expression précédente pour

<< 1 :

f (x) = f (0) + f’ (0) x + f’’(0) + f’’’(0)

f (– x) = f (0) – f’ (0) x + f’’(0) – f’’’(0)

d’où :

Bk(x) = B0 [2 f (0) + f’’(0) x2] e
→

x .

2) Le champ sera le plus uniforme possible au voisinage de l’origine O, si f’’(0) = 0.

Or :

f’ (x) = R32(a + x) (R2 + (a + x)2)–5/2

f’’ (x) = – 3 R3

d’où :
f’’(0) = –3R2

= –3R2

Il faudra donc prendre a = pour réaliser la condition imposée : la distance entre

les deux bobines est égale au rayon de chacune d’elle.
Sur les schémas ci-après, sont respectivement représentées les variations de B(x) le
long de l’axe (Ox),, les lignes de champ créées par les deux bobines ainsi que les varia-
tions de la norme de ce champ le long de l’axe (Oy) pour y compris entre – R et R .
On constatera que le champ est particulièrement uniforme dans l’espace situé entre
les bobines quand elles sont en position de Helmholtz.

z
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y

M
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P1

I
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O1 O2

O

O1 O2

2 spires
en configuration
« HELMHOLTZ »

O x

y
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Le théorème
d’Ampère 8

André-Marie Ampère (1775-1836), né à Lyon,
professeur à l’École polytechnique,

physicien et mathématicien,
a établi les propriétés du champ magnétique

en relation avec les sources de courant.

Citons l’appréciation (avisée !)
de James Clerk Maxwell sur A.-M. Ampère :

« Le tout, théorie et expérience,
semble avoir jailli en pleine vigueur

et complètement armé du cerveau
du Newton de l’électricité.

La forme est parfaite, la rigueur inattaquable,
le tout se résume en une formule

d’où peuvent se déduire tous les phénomènes
et qui devra rester la formule fondamentale

de l’électrodynamique. »

O B J E C T I F S

■ Théorème d’Ampère.

■ Utilisation.

P R É R E Q U I S

■ Champ magnétique.



Circulat ion du champ d’un f i l1
Sur les cartes de champ magnétique tracées au chapitre 7, nous avons pu remarquer
que les lignes de champ magnétique sont fermées. Ceci constitue une différence
fondamentale avec le champ électrostatique : la circulation du champ magnétique
sur un contour n’est pas nécessairement nulle.
Nous utiliserons un cas élémentaire pour mettre en évidence cette propriété.

1.1. Champ créé par un fil rectiligne indéfini
Ce type de circuit modélise un circuit fermé comportant une portion rectiligne de
longueur L grande devant sa distance r au point M où est évalué le champ B

→

(M).
Notons (r, q, z) les coordonnées cylindriques du point M. L’axe (Oz) sera pris
confondu avec le fil et son orientation sera celle du courant d’intensité I (doc. 1).
Tout plan contenant le fil est un plan de symétrie, donc le champ est orthoradial :
B
→

(M) = Bq (r, q, z) eq
→

.
L’axe (Oz) étant un axe de révolution, le champ ne dépend pas de la coordonnée q
: B

→

(M) = Bq (r, z) eq
→

.
Enfin, le système étant invariant dans toute translation parallèle à (Oz), le champ
ne dépend pas davantage de la coordonnée z : B

→

(M) = Bq (r) eq
→

.

L’élément de courant dC
→

, situé en P , crée le champ élémentaire :

dB
→

= .

De OPo = (z + r tana) e→z il vient dC
→

= I dP
→

= I e→z .

Par ailleurs, PM = donc :

dB
→

= e→q .

Le champ créé par le fil indéfini s’établit à :

B
→

(M) =

et les lignes de champ sont des cercles d’axe (Oz).

1.2. Circulation élémentaire du champ
En coordonnées cylindriques, le déplacement élémentaire d’un point M s’écrit :

dM
→

� d r . e→r �rd� . e→� � d z . e→z .

La circulation élémentaire du champ magnétique du fil est donc :

dC �B
→

. dM
→

� � 0 d � .

1.3. Circulation du champ sur un contour enlaçant le fil
Le document 2 représente un contour � enlaçant le fil dans le sens direct ; ce contour
est donc orienté. Lorsque le point M (r, �, z) décrit le contour � , l’angle � varie
de 0 à 2π par valeurs croissantes. La circulation du champ sur ce contour se
déduit immédiatement du résultat précédent :

Si le contour enlace le fil dans le sens indirect, la circulation vaut C� � �� 0 I .

C� ��
�

B
→

. dM
æÆ

� � 0 I .
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8. Le théorème d’Ampère

Doc. 1. Champ magnétique créé par
l’élément de courant dC

→

du fil infini.

P

O

z
r

a

q

M

z

y

x

ndC

ndB(M)

nePM

Doc. 2. Contour � enlaçant un fil dans
le sens direct. (Remarquons que ce
contour est orienté.)

x

�

I

�

y

z

M

r

O

re

e

�



1.4. Circulation du champ sur un contour n’enlaçant
pas le fil

Si le contour n’enlace pas le fil (doc. 3), la variation de l’angle � lorsque M décrit
le contour � est globalement nulle, donc :

1.5. Lien avec le courant électrique traversant le contour
Sur le document 4 est représentée une surface S s’appuyant sur le contour G et
orientée par celui-ci : un tire-bouchon tournant dans le sens choisi pour � tra-
verse la surface S dans le sens de son vecteur normal unitaire n→ .

• Si le contour enlace une fois le fil dans le sens direct (doc. 4), le courant I traverse
la surface S, selon le sens de n→ . Dans ce cas, C� � � 0 I .
• Si le contour enlace une fois le fil dans le sens indirect, le même courant I tra-
verse la surface S, selon le sens de �n→ . Dans ce cas, C� � � � 0 I = m0 (– I ) .
• Si le contour n’enlace pas le fil, le courant à travers la surface S est nul, que la
surface S ait une forme simple (doc. 5) ou un peu plus compliquée (doc. 6). Dans
ce dernier cas, le courant traverse deux fois S, mais dans des sens opposés.
Nous pouvons nous demander si ces résultats sont vrais pour tous les choix de
surface S s’appuyant sur le contour � . Considérons donc deux surfaces, telles que
S 1 et S 2 , s’appuyant sur � et orientées par celui-ci (doc. 7).
En régime indépendant du temps, l’intensité I du courant a la même valeur en tout
point du fil ; les courants qui traversent S1 et S2 sont donc égaux.
• En conclusion, nous admettrons que la circulation du champ magnétique B

→

(M)
créé par un courant filiforme de forme quelconque, le long d’un contour G peut
s’écrire de façon générale :

CG = B
→

(M) . dM
→

= e m0 I .

e = 1 , si le courant I traverse une surface S orientée par G dans le sens du vec-
teur normal n→ ;
e = – 1 , si le courant I traverse S dans le sens de – n→ ;
e = 0 , si aucun courant ne traverse S .

Théorème d’Ampère2
Nous admettons la généralisation des résultats précédents dans le cas d’une distribu-
tion de courants $ dont le vecteur j

→

est à flux conservatif.
Dans ce contexte, le théorème d’Ampère (admis) s’énonce ainsi :

C� ��
�

B
→

. dM
æÆ

� 0 .
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8. Le théorème d’Ampère

La circulation du champ magnétostatique B
→

créé par un ensemble de cou-
rants sur un contour � orienté, est égale à la somme des courants enlacés
par � multipliée par � 0 :

C� ���
B
→

. dM � m0 .

ek = 1, si Ik traverse S orientée par G dans le sens de nÆ.
ek = –1, si Ik traverse S dans le sens de – nÆ.
ek = 0, si Ik ne traverse pas S.

Doc. 4. Le courant I traverse la sur-
face S s’appuyant sur le contour �
dans le sens de n→ .

�

I

S

n

Doc. 5. Le courant I ne traverse pas la
surface S s’appuyant sur le contour � .

�

I

S

n

Doc. 6.
�

I

S

n

Doc. 7. Courant traversant les deux
surfaces s’appuyant sur � .

�

I S1n2

n1

S2

Doc. 3. Contour � n’enlaçant pas le fil.

x
�

I

OM

�

y

z

M

r

O

re

e

�



Par exemple, sur le document 8, nous avons :

C� �� 0 (I 1 �I 2 �2 I 3) .

La circulation ne dépend pas de I4 .

De façon plus générale, nous pouvons aussi écrire C� ��0 j
→

. n→dS , le résul-

tat ne dépendant pas du choix de la surface S s’appuyant sur la courbe de circulation �.

Remarques

• Il faut garder à l’esprit que le théorème d’Ampère n’est rigoureusement valable que
pour les régimes indépendants du temps, donc en magnétostatique. En particulier, dans
des cas où les lignes de courant sont interrompues, donnant lieu à des accumulations de
charges, nous ne pouvons pas l’appliquer. Nous pouvons en revanche l’employer
dans l’approximation des régimes quasi permanents lorsque le vecteur j

→

est à flux
conservatif. L’étude plus complète de cette difficulté sera faite en seconde année.
• Nous excluons les cas exotiques tels que le contour � rencontrant un circuit
filiforme, ou encore un contour pour lequel il est impossible de trouver simplement
une surface s’appuyant dessus.

Conséquences du théorème d’Ampère3
Ayant postulé la loi de Biot et Savart, nous avons montré que le champ magnéto-
statique est :

• un champ dont le flux à travers toute surface fermée est nul ;

• un champ lié à ses sources, les courants, par le théorème d’Ampère.

Comme pour le champ électrostatique, nous résumerons ces propriétés en seconde
année sous la forme de lois locales.

Les outils dont nous disposons nous permettent cependant d’aborder l’étude com-
plète du champ : évolution locale et discontinuités du champ, calcul de celui-ci…

Le théorème d’Ampère et la conservation du flux magnétique sont deux
propriétés qui permettent l’étude complète du champ magnétostatique.
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8. Le théorème d’Ampère

Doc. 8. La circulation de B
→

sur le
contour � ne dépend que de I1 , I2 et
I3 .

I1

I2

I3

I4

�

Champ uniforme

Établir que, si dans une région vide de courants, les
lignes de champ sont des droites parallèles, alors le
champ B

→

est uniforme.

Les tubes de courants élémentaires étant des cylindres
de section droite constante (B

→

. d
→

S n �cte) implique
B
→

� cte
→

le long d’une ligne de champ.

L’application du théorème d’Ampère à un contour rec-
tangulaire comprenant deux lignes de champ (doc. 9)

montre immédiatement que B1 �	 �B2 �	 . Par suite
B
→

� cte
→

dans cette région.

Application 1

Doc. 9.

B2

B1
�	

dSn dSn'



Calcul d’un champ magnétique4 à l ’a ide du théorème d’Ampère

4.1. Principe du calcul
Comme le théorème de Gauss, le théorème d’Ampère est de formulation remar-
quablement simple. Pour une distribution de courants connue, nous pourrons calculer
la circulation du champ sur des contours convenablement choisis pour en déduire
l’expression du champ. Il faut que le lien entre la circulation et le champ soit élé-
mentaire : champ magnétique d’expression déjà très simplifiée, contour de géo-
métrie simple.

Le principe du calcul correspondra à la démarche exposée, ci-dessous, dans le cas
de distributions de courants à symétries élevées.

4.1.1. Première étape : considérations de symétries

Il faut obtenir, à l’aide des symétries de la distribution, la forme du champ magné-
tique :
• utilisation de plans de symétrie ou d’antisymétrie pour déterminer sa direction ;
• utilisation d’invariance par rotation ou translation pour réduire la dépendance de
ses composantes vis-à-vis des coordonnées… (il faut penser à utiliser un système
de coordonnées adapté à la symétrie du problème).

4.1.2. Deuxième étape : choix du « contour d’Ampère »

La forme obtenue pour le champ détermine le choix de la courbe � de circulation,
dite « contour d’Ampère », afin d’obtenir sans peine la circulation du champ magné-
tique.

4.1.3. Troisième étape : application du théorème d’Ampère

Elle achève la détermination du champ magnétique.

4.2. Distribution à géométrie plane : nappe plane infinie
Nous nous intéressons à la détermination du champ créé par une nappe de courant
infinie dans le plan (xOy), avec j

→

S �jS e→x (doc. 10).

Une telle nappe de courants résulte de la modélisation surfacique d’un ensemble
de courants filiformes, rectilignes, infinis, jointifs, d’intensité I, disposés parallè-
lement à l’axe (Ox). Notons n le nombre de fils coupant, par unité de longueur,
l’axe (Oy), il vient : jS = n I .

4.2.1. Considérations de symétrie

La distribution est invariante par symétrie par rapport à tout plan parallèle à (xOz),
donc B

→

(x, y, z) �B (x, y, z) e→y . L’invariance du problème par translation parallè-
lement à (Ox) ou bien (Oy) nous permet la simplification supplémentaire :

B
→

(x, y, z) � B (z) e→y .

Le théorème d’Ampère permet une détermination rapide du champ
magnétostatique pour des distributions de courants de symétries élevées.
Après détermination de la forme du champ à l’aide de considérations de
symétrie, son application à un contour orienté de géométrie adaptée aux symé-
tries du problème permet de déterminer l’amplitude du champ.
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8. Le théorème d’Ampère

Doc. 10. Nappe plane infinie.

xO

�

yz

B

B'

M

M'

jS

�



Notons aussi que le plan (xOy) est un plan de symétrie de la distribution.

Au point M’ symétrique du point M par rapport à ce plan, le champ B’
→

est
l’opposé du symétrique du champ B

→

en M : la fonction B (z) est impaire.

4.2.2. Choix du « contour d’Ampère »

Un contour permettant un calcul aisé de la circulation doit posséder des côtés paral-
lèles au champ, à z �cte , le caractère impair de B (z) nous conduisant naturelle-
ment au choix du contour du document 10 : ce contour est constitué d’un rectangle
de hauteur 2z suivant (Oz), et de largeur L suivant (Oy) : l’orientation du contour
apparaît en noir sur le schéma. La circulation du champ sur ce contour orienté est :

C � LB (z) + (� L) B (� z) �2LB (z) (avec z � 0).

4.2.3. Champ magnétique

En appliquant le théorème d’Ampère à ce contour, nous avons (la normale à la sur-
face est orientée suivant – e→x) :

2LB (z) �� � 0 j S L .

Finalement le champ de la nappe est :

B
→

� � signe (z) e→y .

Remarques

• En traversant la nappe de courant dans le sens de e→z , le champ magnétique pré-
sente la discontinuité B

→

(0+) – B
→

(0−) = m0 j
→

S � e→z .

• La modélisation surfacique a considérablement simplifié le problème.
Rigoureusement, pour un ensemble de courants filiformes identiques orientés selon
(Oy) et distants de a , les considérations de symétrie et d’invariance se limitent à
la périodicité du champ :

B
→

(x, y, z) = B
→

(x + k a, y, z).

Il est alors impossible d’utiliser le théorème d’Ampère pour calculer le champ.

Une étude numérique montre que, l’écart relatif entre les deux calculs est inférieur
à 10–3 dès que z est supérieur à 1,5 a.

146

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

8. Le théorème d’Ampère

Champ créé par nappe plane

1) Déterminer le champ créé par une couche plane infi-
nie, contenue entre les plans :

z�� et z �� ,

de courant volumique uniforme j
→

� j e→x .

2) Retrouver le cas de la nappe plane comme cas limite
de celui-ci.

1) Les propriétés de symétrie utilisées pour le cas de la
nappe sont encore valables, donc :

B
→

(x, y, z) �B (z) e→y , avec B (�z) � � B (z) .

L’application du théorème d’Ampère au même type de
contour du § 4.2.2. nous donne :

• cas 1, 0 � z � : 2LB (z) � � 2� 0 Lj z ;

• cas 2, z � : 2LB (z) � � � 0 Lje .

Nous en déduisons :

• si 0 	 z 	 : B � � � 0 j z e→y ;

• si 	 z : B � � �� 0 j � signe (z) e→y .

2) À la limite e tend vers 0 , avec jS �je maintenu constant,
nous retrouvons le cas de la nappe plane infinie.

Application 2

Doc. 11.

�0

–

– e/2
e/2

j
2
e

�0 j
2
e

B

zO



4.3. Distribution de courants axisymétrique : le tore
Un contour C est dessiné dans un plan contenant l’axe (Oz). Sa rotation complète
autour de l’axe (Oz) engendre un tore (doc. 12). Si C est un cercle, le tore obtenu est à
section circulaire ; si C est un rectangle, le tore obtenu est à section rectangulaire.

Nous étudions le champ magnétique engendré par N spires enroulées sur un tore
et parcourues par un courant d’intensité I (cette situation s’apparente aux circuits
primaire et secondaire de certains transformateurs).

Pour un bobinage assez serré (spires quasi jointives), cette distribution filiforme
peut être assimilée à une distribution surfacique de courants : c’est une opération
de nivelage permettant alors d’admettre la symétrie de rotation autour de l’axe (Oz).

4.3.1. Considérations de symétrie

Tout plan contenant l’axe (Oz) est un plan de symétrie et l’amplitude du champ
magnétique, orthoradial, ne dépend, en coordonnées cylindriques r, � et z, que des
variables r et z :

B
→

�B (r, z) e→� .

4.3.2. Choix du « contour d’Ampère »

Sur les lignes de champ, cercles d’axe (Oz), la norme du champ reste constante.
Sur un contour d’Ampère � coïncidant avec une ligne de champ, la circulation du
champ vaut 2π r B (r, z) , quand G est parcouru dans le sens du champ.

4.3.3. Champ magnétique

Appliquons maintenant le théorème d’Ampère.
Pour un contour �1 à l’intérieur du tore (doc. 14), la somme des courants enlacés
est NI . Le champ en un point à l’intérieur du tore est donc :

B
→

int � e→� .

Pour un contour �2 à l’extérieur du tore, la somme des courants enlacés est nulle
(il est toujours possible de trouver une surface s’appuyant sur �2 sans point com-
mun avec le tore), et le champ extérieur l’est aussi :

B
→

ext � 0
→

.

Ces résultats montrent que le tore canalise les lignes de champ magnétique.

Remarque

La dépendance de B
→

vis-à-vis de z est masquée mais effective : si z et r sont tels que
le point M est intérieur au tore, B

→

est non nul ; il est nul si M est extérieur au tore.

4.4. Distribution à géométrie cylindrique de courants
parallèles : cylindre infini de densité de courants uniforme
Dans ce modèle d’extension infinie, un courant d’intensité résultante I circule
parallèlement à (Oz) dans un cylindre d’axe (Oz), à section circulaire de rayon R,
avec une densité volumique uniforme j

→

�j e→z (doc. 15).

Ce courant cylindrique résulte de la modélisation volumique d’un ensemble de cou-
rants filiformes, rectilignes, infinis, jointifs, parallèles à (Oz) et d’intensité I . En
notant n le nombre de fils coupant une surface unité dans le plan (xOy), il vient
j = n I . La distribution volumique, en apportant des symétries que ne possède pas
la distribution discrète de courants filiformes, rend plus facile l’étude du champ
créé.
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8. Le théorème d’Ampère

Doc. 12. Tore à section quelconque.

I

z

x

y

Doc. 13. Mise en évidence d’un plan de
symétrie des courants.

z

O
x

y
B(M)

e

er

�

�

M

I

I

(P )

Doc. 14. Choix du contour d’Ampère.

z

x

y

2�

1�

Doc. 15. Cylindre infini, avec jn uni-
forme.

z

B

�

O
M

j

r



4.4.1. Considérations de symétrie

Tout plan contenant l’axe (Oz) étant un plan de symétrie, B
→

est orthoradial :
B
→

�B (r, �, z)e→� (en coordonnées cylindriques d’axe (Oz)).

La distribution de courants présente les symétries de translation selon (Oz) et de
rotation autour de (Oz) : B

→

ne dépend donc que de la coordonnée r : B
→

�B (r)e→� .

4.4.2. Choix du « contour d’Ampère »

Les lignes de champ sont donc des cercles centrés sur (Oz) et la norme de B
→

est
la même en tout point d’une ligne de champ. Nous choisirons donc un contour
d’Ampère � confondu avec une ligne de champ, cercle d’axe (Oz) et de rayon r .
Bien remarquer son orientation sur le schéma (doc. 16).

4.4.3. Champ magnétique

En parcourant ainsi, dans le sens du champ et en distinguant le cas où le cercle est
à l’intérieur du cylindre de celui où il entoure ce dernier, nous obtenons :

• cas 1, 0 � r � R : 2π rB (r) �� 0 jπ r2 � � 0 I ;

• cas 2, r � R : 2π rB (r) � � 0 jπR2 � � 0 I .

Il vient donc :

• B
→

int � �� 0 j �e→� ; • B
→

ext � �� 0 j �e→� .

Le champ de cette distribution volumique finie est continu en r �R (doc. 17).

À l’extérieur du cylindre, le champ s’identifie à celui créé par un fil rectiligne infini
placé suivant l’axe (Oz) et parcouru par le courant I = jπ R2 .

4.5. Distribution à géométrie cylindrique de courants
annulaires : le solénoïde infini

Considérons un solénoïde « infini » de section circulaire, parcouru par un courant
I et possédant n spires par unité de longueur.

Au chapitre 7, nous avons montré que le champ vaut :
B
→

axe �� 0 nIe→z

sur l’axe du solénoïde. Une étude qualitative des lignes de champ nous avait per-
mis de remarquer que le champ décroissait très vite à l’extérieur d’un solénoïde de
longueur finie.

Nous nous proposons de déterminer de façon plus complète le champ créé par un
solénoïde infini en tout point de l’espace à l’aide du théorème d’Ampère.

4.5.1. Considérations de symétrie
Le solénoïde est assimilé à un assemblage de spires jointives, contenues dans des
plans perpendiculaires à (Oz) (doc. 18).

Tout plan normal à (Oz) est un plan de symétrie de la distribution de courants, donc :
B
→

� B (r, �, z)e→z .

L’invariance de la distribution par translation parallèlement à (Oz), et par rotation
autour de (Oz) permet de simplifier l’expression du champ : B

→

�B (r)e→z .

4.5.2. Choix du « contour d’Ampère »
Pour une telle géométrie, le choix d’un contour rectangulaire, possédant deux côtés
parallèles à (Oz), s’impose (doc. 18). Bien remarquer (à nouveau !) les orientations
de ces contours.
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8. Le théorème d’Ampère

Doc. 17. Évolution de B (r) .

�0 j
2
R

O

B

R r

Doc. 16. Choix du contour G (contour
d’Ampère).

R

J

r

contour
d'Ampère

Doc. 18. Solénoïde infini.

�

A1 zB1

C1D1

A2 B2

C2D2



4.5.3. Champ magnétique

Pour un contour de type A1 B1 C1 D1 à l’intérieur du solénoïde, non traversé par
le bobinage du solénoïde, le théorème d’Ampère donne :

(A1 B1) Baxe �(A1 B1) B (r) �0 tant que r � R .

Par conséquent, le champ à l’intérieur du solénoïde infini est uniforme, égal à sa valeur
sur l’axe :

B
→

int �B
→

axe �� 0 nIe→z .

Pour un contour de type A2 B2 C2 D2 , traversé par n A2 B2 spires du solénoïde,
le théorème d’Ampère donne (A2 B2) Baxe �(A2 B2) B (r) � �0 (n A2 B2) I .

Le champ à l’extérieur du solénoïde infini est ainsi nul :

B
→

ext � 0
→

.

Remarques

• Un solénoïde infini peut être considéré comme un tore de rayon moyen tendant

vers l’infini, en remplaçant par n dans l’expression du champ.

• En utilisant la modélisation du solénoïde par une nappe solénoïdale de courant
surfacique j

→

S �nI e→� , nous constatons que le champ magnétostatique subit, à la
traversée de la surface du solénoïde dans le sens e→r , la discontinuité :

B
→

ext – B
→

int � – � 0 nIe→z � � 0 j
→

S � e→r .
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Champ d’un solénoïde infini
à section quelconque

Reprendre cette étude pour un solénoïde infini compor-
tant n spires jointives par unité de longueur, identique
à celui du document 18, à ceci près que les spires sont
planes, mais de forme quelconque, non nécessairement
circulaire. On admettra que le champ magnétique est
nul à très grande distance de l’axe, pour r →∞ .

Utilisons les coodonnées polaires, bien que l’axe (Oz) ne
soit plus axe de symétrie. Le champ est, a priori, de la
forme B

→

= B(r, q) e→z .

Utilisons les contours d’Ampère A1B1C1D1 et
A2B2C2D2 (doc. 19). Attention aux orientations !

Leurs côtés « utiles » vérifient r = cte et q = cte.

Du théorème d’Ampère, nous déduisons que :

• B
→

est uniforme à l’extérieur. Donc B
→

ext = B
→

∞ = 0
→

.
• B(C1) = m0 n I en tout point C1 situé à l’intérieur.

L’expression du champ créé par un solénoïde infini est
donc indépendante de la forme des spires :

B
→

int = m0 n I e→z et B
→

ext = 0
→

.

Application 3

Doc. 19. Solénoïde infini de section quelconque.

O
z
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C2 D2
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Discontinuité du champ à la traversée5 d’une distr ibution surfac ique
de courants

Nous avons constaté à plusieurs reprises (cf. § 4.2, 4.3, 4.4 et 4.5) que le champ
magnétique subissait une discontinuité à la traversée d’une distribution de courants
surfaciques.

Dans tous les cas cités, la composante normale du champ est continue, en revanche,
la composante tangentielle subit une discontinuité :

B
→

2 – B
→

1 = m0 jS
→

� n12
→

.

Nous admettrons la généralité de ce résultat.

À la traversée d’une couche parcourue par un courant surfacique de den-
sité jS

æÆ

, la composante tangentielle du champ magnétique subit une dis-
continuité finie :

B
æÆ

2 – B
æÆ

1 = m0 jS
æÆ

� n12
Æ

.
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8. Le théorème d’Ampère

Un ensemble de N courants fili-
formes rectilignes indéfinis et
d’intensité I , sont régulièrement
disposés sur les génératrices d’un
cylindre à base circulaire de
rayon R et d’axe (Oz). Les N
fils sont jointifs et forment une
distribution de courant à la sur-
face du cylindre parallèlement à
son axe (doc. 20).

1) Modéliser cette distribution de courants filiformes
en l’assimilant à une nappe de courants surfaciques
dont on déterminera le vecteur densité de courant jS

→

.

2) Déterminer le champ B
→

(M) créé à l’intérieur puis
à l’extérieur du cylindre.

3) On s’intéresse maintenant à la valeur du champ au
voisinage de la nappe de courant. Vérifier qu’à la tra-
versée de la nappe de courant, le champ subit la dis-
continuité : B

→

2 – B
→

1 = µ0 jS
→

� n12
→

.

1) L’opération proposée est une opération de nivelage.
Le vecteur densité de courant a pour norme : 2πR jS = NI
et le vecteur densité de courant est :

jS
→

= e→z .

2) La symétrie cylindrique de la distribution de cou-
rants nous permet (cf. § 4.4) d’affirmer que le champ
est orthoradial et que sa norme ne dépend que de la
coordonnée r : B

→

(M) = Bq (r) e→q .

Nous prendrons donc, comme contour d’Ampère G un
cercle d’axe (Oz ) et de rayon r (doc. 21). Bien remar-
quer l’orientation de G .
À l’intérieur du cylindre (r < R), le courant enlacé par
G est nul et B

→

(M) = 0
→

.
À l’extérieur du cylindre (r > R), le courant enlacé par
G vaut NI donc :

B
→

(r) = e→q = m0 jS e→q .

Au voisinage de la nappe de courants, le champ vaut :
B
→

(R+) = m0 jS e→q .

3) À la traversée de la nappe de courant, de l’intérieur
vers l’extérieur du cylindre, le champ subit la discon-
tinuité : B

→

(R+) – B
→

(R–) = m0 jS
→

e→q = m0 jS
→

� e→r ce qui
est bien de la forme attendue.

Application 4

Doc. 20. Solénoïde infini
de section quelconque.

O

R

R

O

z
r

M

z

nB(M)

Doc. 21.
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8. Le théorème d’Ampère

● THÉORÈME D’AMPÈRE

La circulation du champ magnétostatique B
→

créé par un ensemble de courants sur un contour G est égale à la

somme des courants enlacés par G multipliée par m 0 : CG = �G
B
→

. d r
→

= .

ek = 1, si Ik traverse S orientée par G dans le sens de n→. ek = –1, si Ik traverse S dans le sens de – n→. ek = 0,
si Ik ne traverse pas S.

Le théorème d’Ampère donne accès au comportement intégral du champ magnétostatique qui est un champ à flux
conservatif.

● CALCUL D’UN CHAMP MAGNÉTIQUE
Le théorème d’Ampère permet une détermination rapide du champ magnétostatique pour des distributions de cou-
rants de symétries élevées. Après détermination de la forme du champ à l’aide de considérations de symétrie, son
application à un contour de géométrie adaptée aux symétries du problème permet de déterminer l’amplitude du
champ.

● DISCONTINUITÉ DU CHAMP
À la traversée d’une couche parcourue par un courant surfacique de densité jS

→

, la composante tangentielle du
champ magnétique subit une discontinuité finie : B

→

2 – B
→

1 = m0 jS
→

� n12
→

.

C Q F R

Avez-vous retenu l’essentiel ?

✔ Quelle convention utilise-t-on pour orienter une surface ouverte S , lorsque le contour G qui la délimite est orienté ?
✔ Énoncer le théorème d’Ampère et en donner un exemple d’application.
✔ Retrouver, par application du théorème d’Ampère, l’expression du champ magnétique créé par un fil rectiligne

infini parcouru par un courant I .
✔ Retrouver, par application du théorème d’Ampère, l’expression du champ créé par un solénoïde infiniment long,

en un point de son axe, en supposant que le champ extérieur est nul.

Du tac au tac (Vrai ou faux)

Contrôle rapide

1. Considérons deux surfaces ouvertes délimitées
par le même contour orienté G et, toutes deux,
orientées par ce même contour. Les vecteurs nor-
maux aux deux surfaces orientées sont des vec-
teurs sortants de la surface fermée
❑ Vrai ❑ Faux

2. Si la distribution de courants ne possède pas de
symétries suffisantes, il n’est pas possible d’ap-
pliquer le théorème d’Ampère.
❑ Vrai ❑ Faux

3. Il n’est pas nécessaire qu’un contour d’Ampère
soit une courbe fermée.
❑ Vrai ❑ Faux

4. Le théorème d’Ampère établit la relation qui
lie le champ magnétique à ses sources (les
courants), tout comme le théorème de Gauss
établissait la relation entre le champ électrique
et ses sources (les charges électriques).
❑ Vrai ❑ Faux

� Solution, page 156.
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Spire et solénoïde

1) a) Calculer la circulation du champ magnétique le long
de l’axe (Ox) (de �∞ à �∞) d’une spire circulaire de rayon
R et parcourue par un courant d’intensité I .
b) Interpréter le résultat obtenu.

2) Calculer de même la circulation du champ magnétique
le long de l’axe (Ox) (de �∞ à �∞) d’un solénoïde circu-
laire de rayon R, de longueur 	 et comportant N spires join-
tives parcourues chacune par un courant d’intensité I .

Fil

Un courant filiforme d’inten-
sité I circule le long de l’axe
(Oz) d’un trièdre trirectangu-
laire (Oxyz).

1) Calculer la circulation du
champ magnétique créé par
ce courant le long d’une droite
(D) orthogonale au fil et
située à la distance a de ce
fil.

2) Interpréter le résultat obtenu.

Cylindre avec cavité cylindrique

Une cavité cylindrique, d’axe
(O’z) et de section circulaire
de rayon R’, a été pratiquée
dans un cylindre conducteur
d’axe (Oz) et de rayon R
(doc. ci-contre). En dehors de
la cavité, le conducteur est
parcouru par un courant
constant de densité uniforme
jk = j ezk .
Déterminer le champ magnétique en tout point de la cavité.

Courant filiforme devenant surfacique

Un courant d’intensité I circule dans un fil rectiligne de sec-
tion négligeable, confondu avec le demi-axe (Oz) (z � 0).
Arrivé en O, il circule sur la surface d’un disque de centre O
et de rayon a, puis sur la surface d’un cylindre conducteur
creux d’axe (Oz), de rayon a et d’épaisseur négligeable.

1) Déterminer l’expression du champ magnétique en tout
point de l’espace où il est défini.

2) Vérifier les relations de passage (continuité ou disconti-
nuité) du champ magnétique.

Câble coaxial particulier

Une ligne coaxiale (géométrie modélisée cylindrique) est réa-
lisée avec un matériau conducteur dont les propriétés magné-
tiques sont équivalentes à celles du vide. Un cylindre conducteur
interne plein, d’axe (Oz) et de rayon a est entouré d’un deuxième
conducteur coaxial, de rayon intérieur b1 et de rayon extérieur
b2 . L’espace entre les deux conducteurs est vide.
Le conducteur central est parcouru par un courant d’intensité
I , selon (Oz), et le retour est assuré par le conducteur péri-
phérique. Les densités volumiques sont supposées uniformes.
Calculer le champ magnétostatique créé par une telle distri-
bution en tout point de l’espace.

Champ magnétique dans un conducteur

Exercices

B
O O'

jez

z
I

jSD

jSC

z' O
a

z

x

r

z'
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�
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(D)
a

z

y
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Cylindre avec cavité.
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8. Le théorème d’Ampère

Un courant électrique d’intensité I circulant dans un long fil
rectiligne entre dans un conducteur qui occupe tout le demi-
espace z > 0 et dont les caractéristiques magnétiques sont
équivalentes à celles du vide et s’y répand uniformément (les
différentes directions du conducteur sont supposées équiva-
lentes).

Établir, dans ces conditions, que le champ magnétique en un
point M, de coordonnées sphériques r et � est :

B
→

� e 
→ .

Long cylindre en rotation
autour de son axe

Un long cylindre, supposé infini, de rayon R et chargé unifor-
mément en volume avec la densité � , tourne à vitesse angulaire
! constante autour de son axe (Oz) relativement au
référentiel 5 . Le milieu a les mêmes propriétés magnétiques
que celles du vide et il n’existe pas de charge surfacique.
Calculer, dans le référentiel 5, le champ magnétostatique
créé par une telle distribution de courants.

Distributions cylindriques de courants

Deux cylindres �1 et �2 , infiniment longs, de même rayon
R, d’axes parallèles (de vecteur directeur e z

→ ) et de centres O1
et O2 distants de 2d (d � R) sont parcourus respectivement
par des courants volumiques uniformes :

j 1
→

� j e z
→ et j 2

→

��j e z
→ .

Déterminer le champ magnétique dans la région commune
aux deux cylindres (donc vide de courants).

Modélisation d’un solénoïde

Soit en ensemble de vingt et une spires circulaires de rayon
R, réalisées avec un fil de section négligeable, disposées

régulièrement, distantes de les unes des autres et par-

courues par un courant d’intensité I . Les résultats d’un logi-
ciel permettant l’étude du champ magnétique créé par un
ensemble de spires quelconques sont les suivants :
1) Avec R �1 ; I � 1 ; � 0 � 4π : le champ magnétique
sur l’axe, au centre est égal à b 1 � 46,98 , et sur la face de
sortie b 2 � 27,87 .

En déduire le champ magnétique sur l’axe, B 1 (au centre) et
B 2 (sur la face de sortie). Les formules classiques du solé-
noïde sont-elles applicables ?

2) Une ligne de champ issue d’un point A de la spire
centrale situé à 0, 50 R de l’axe du solénoïde, passe en
un point B de la spire de sortie situé à 0, 64R de l’axe.

Justifier ce résultat.

Sont-elles de nature
magnétostatique ?

Soit cinq configurations de champs de vecteur V
→

. Préciser si
les configurations proposées peuvent être celles d’un champ
de nature magnétostatique. On
supposera que les lignes de
champ sont invariantes par
translation selon un axe (Oz)
perpendiculaire au plan de
figure. Les flèches représen-
tent le champ V

→

et leur lon-
gueur est proportionnelles à
la norme du champ V

→

.b1 = 46,98

b2 = 27,87

∆

O
z

Cas a.

Cas b. Cas c.
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Cartes de champs magnétiques

On a tracé, à l’aide d’un logiciel de simulation, des cartes de
champs magnétiques créées par des courants circulant dans des
fils rectilignes perpendiculaires au plan de figure, en présence
éventuellement d’un champ magnétostatique uniforme contenu
dans le plan de figure.

Les intensités circulant dans les fils sont supposées égales,
mais les sens sont à préciser, l’axe (Oz) pointant vers l’avant
de la figure.

Décrire chaque configuration envisagée, en vérifiant à chaque
fois les propriétés générales d’un champ magnétique.

Que peut-on dire des vecteurs champ magnétique B
→

en P1 ,
P2 , P3 et P4 ?

ez ez

Cas d. Cas e.

B (P2)

B (P3)

B (P4)

B (P1)

P2

P3 P4

P1

( 1)�

( 2)�

B (P2)

B (P3) B (P4)

B (P1)
P2

P3 P4

P1

( *)� y

xx' ( )�A

O

B

Cas a.

Cas b.

B (P2)

B (P1)

P1

P2

y

P

O

y

x

y'

x' A B

P1

P2

Cas c.

Cas d.
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8. Le théorème d’Ampère

y

x

y'

x' A B

Cas e.

A

O(Oz)

C

B

Cas f.

Cas g.

A

C

B

y

y'

xx'

Cas h.

I I

II

I I

Cas i.

A B

D C

Cas j.



Corrigés

156

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

ez
�

M

er

e

z

partie cylindrique (C)

disque (D)

jSC

jSD
a

I

O

1) a) Le vecteur champ magnétique créé par une spire (de rayon R, par-

courue par un courant d’intensité I ) en un point de son axe est donné par :

B (M)
→

� sin 3 � e
→

x .

La circulation de B
→

sur (x’Ox) est égale à C ���∞

�∞
B(x) dx , avec :

x �� ; dx � da et sin � � sin a .

Soit C ��π

0
Rda � �0 I.

b) Soit le contour fermé constitué de la
droite (D) et du demi-cercle (� ) de rayon
r infini.

�
(D)

B
→

. d	
→

�� 0 I ;

�(D) �(� )
B
→

. d	
→

�� 0 I .

D’où �
(�)

B
→

. d	
→

� 0 , ce qui est normal, car nous verrons dans le chapitre 9 que pour

r grand, B varie en , donc l’intégrale tend bien vers 0 .

2) Le solénoïde étant constitué de N spires, en utilisant le résultat précédent, nous

avons �� ∞

� ∞
B(x) dx �� 0 N I .

1) Le champ créé par le fil en M est : B
→

(M) = et sa circulation

élémentaire le long de la droite (D) s’écrit :

dC = B
→

(M) . dM
→

= .

Comme r = , y = a tanq

et dy = , il vient :

dC = dq et par suite :

C = .

Interprétation
Pour obtenir un contour fermé, il
faut associer une droite (D’) paral-
lèle à (D) : la circulation de B

→

sur
les parties BC et DA finies d’un

champ tendant vers 0 en est
nulle. D’où :

B
→

. dM
→

= m0 I .

Procédons par superposition. B
→

est la résultante du champ B
→

1 d’un cylindre

plein d’axe (Oz ) et de rayon R , parcouru par un courant de densité uniforme j
→

,
et du champ B

→

2 d’un cylindre plein d’axe (O’z ) et de rayon R’, parcouru par un
courant de densité volumique uniforme – j

→

.
Pour le cylindre plein :

B
→

1(M) = jr eq
→ = ( j

→

� OMo) .

De même B
→

2(M) = (– j
→

� O’M’p ) .

Le champ résultant est alors : B
→

= B
→

1 + B
→

2 = ( j
→

� OO’o ) .

Le champ est uniforme en tout point de la cavité. Il est perpendiculaire à OO’.

1) Tout plan contenant l’axe (Oz) est un plan de symétrie des courants, donc :

B
→

(M) �B (r, �, z) e�
→

.

Le système de courants est invariant par rotation autour de (Oz), d’où :
B
→

(M) �B (r, z) e�
→

.

Appliquons le théorème d’Ampère en considérant des courbes de circulation de rayon
r et d’axe (Oz) :

• z � 0 : B 1
→

� e�
→

;

• z � 0 : si r � a : B 2
→

� e�
→

; si r � a : B 3
→

�0
→

.

2) Étudions les relations de continuité de B
→

:

• Sur la partie cylindrique (C )

j SC

→

� e z
→

. Nous vérifions bien que (B 2
→

�B 3
→

) ��0 j SC
→

� e r
→

e r
→. (B 2

→

�B 3
→

) � 0 .
• Sur le disque (D)

j SD
→

� e r
→

. Nous vérifions bien que (B 1
→

�B 3
→

) ��0 j SD
→

� �e z
→

e z
→. (B 1

→

�B 3
→

) �0 .

Solution du tac au tac, p. 151.
1. Faux
2. Faux

3. Faux
4. Vrai

x

�
�

x' MO

R
I nB(M)

M�( )

(D)

O

r

a
q

M

y

x

ndB(M)

ner
neq

I

�( )

(D)

A

(D') B

C

D O
2 a
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8. Le théorème d’Ampère

Tout plan passant par M et l’axe de symétrie (z’Oz) est un plan de symétrie

de courants, donc B
→

est orthoradial : B
→

�B (r, �, z) e�
→

. Le système de courants

étant invariant par rotation autour de (z’z) et par translation suivant (z’z), nous avons :

B
→

� B (r) e�
→

.

L’application du théorème d’Ampère avec une courbe fermée constituée d’un cercle
de rayon r et d’axe (Oz) nous donne :

• r � a : B
→

� e�
→

;

• a � r � b 1 : B
→

� e�
→

;

• b 1 � r � b 2 : B
→

� �1 � � e�
→

;

• r � b 2 : B
→

� 0
→

.

Remarquons que les densités volumiques de courants sont telles que :

• cylindre de rayon a : j V a
→

� e z
→

;

• cylindre de rayon « b 1 , b 2 » : jVb
→

� � e z
→

.

La simulation ci-dessus nous permet d’illustrer les résultats.

1) Les différentes directions étant équivalentes, la densité volumique de cou-

rants dans le conducteur est de la forme j V
→

�j V (r) er
→

.

Le flux de ce vecteur à travers une demi-sphère de rayon r doit être égal à I , d’où :

j V
→

� er
→

.

Tout plan passant par M et contenant l’axe (Oz) est un plan de symétrie des courants,
d’où B

→

�B (r, �,  ) e 
→

.

Le système étant invariant par rotation autour de (Oz), nous avons B
→

�B (r, �) e 
→

.

Appliquons le théorème d’Ampère en prenant un contour (G ) fermé constitué
d’un cercle passant par M et d’axe (Oz). La circulation de B

→

sur (G ) :
(B (r, �) 2 π r sin �) est égale à � 0 fois le flux de j V

→

à travers toute surface
s’appuyant sur (r), donc en particulier une calotte sphérique de centre O, soit :

� 0 j V (r) 2 π (1 �cos �) r 2 .

D’où B
→

(r, �) � e 
→ = tan e 

→.

La densité volumique de courants est égale à j V
→

�� ! r e�
→

.

Calculons B
→

en M : le plan passant par M et perpendiculaire à (Oz) est un plan de
symétrie des courants, donc B

→

�B (r , �, z) ez
→ . Le système de courants est invariant

par rotation autour de (Oz) et par translation suivant (Oz), donc B
→

�B (r) ez
→

.

Cette répartition de courants est assi-
milable à un empilement de solénoïdes
infiniment longs, donc B

→

(r � R) �0 .

Pour calculer B
→

à l’intérieur du système
de courants, appliquons le théorème
d’Ampère : la circulation sur les parties
AB, BC et CD est nulle. D’où :

B(r) h �� 0 h�R

r
j V (r) d r .

Ce qui nous donne :

B
→

(r) � �
� 0

2
� !
� (R2 �r2) ez

→
.

Remarque

Le champ B
→

(r) est le champ magnétique créé par l’empilement de solénoïdes (d’épais-
seur d r et portant des intensités surfaciques d jS �j V d r ) infinis, situés entre r et R .
Le champ magnétique d’un solénoïde portant jS étant égal à � 0 j S en

norme, nous obtenons B
→

��R

r
� 0 d j S ez

→
��R

r
� 0 j V d r ez

→ .

Nous obtenons la même intégrale.

Le plan (xOz) est un plan de symétrie des courants, donc B
→

est perpendiculaire

à ce plan et B
→

�B (x, y, z) e y
→

.

Le système de courants étant invariant par translation suivant (Oz), B
→

� B (x, y) e y
→

.
Si nous sommes dans la région commune aux deux cylindres, nous sommes à l’inté-
rieur des deux cylindres.

Cherchons B 1
→

créé par le cylindre 1� en un point intérieur au cylindre. Ce champ
est orthoradial B 1

→

(M ) �B (O 1 M) e �
→ . L’application du théorème d’Ampère sur

un contour fermé � circulaire de centre O 1 et de rayon r 1 � O 1 M � R nous donne :

B 1 2π r � � 0 j 1 π r 2 , soit B 1
→

(M ) � j 1
→

� O 1 M
→

.

De même : B 2
→

�� j 2
→

� O 2 M
→

et : B total
→

(M) � j e z
→

� (O 1 M
→

�O 2 M
→

) � j e z
→

� O 1 O 2
→

,

soit : B
→

� j (O 1 O 2) e y
→

.

a

b1

b2
z

Bext = 0

A B

CD

R

r

jV h
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Le champ est uniforme dans la cavité, comme l’indique les simulations sur les docu-
ments 2 et 3.

Remarquons que nous visualisons un point de champ nul ; considérons un point P situé
à l’extérieur du cylindre 1� et à l’intérieur du cylindre 2� .

B 1
→

(P) � j 1
→

� O 1 P
→

et B 2
→

(P) � j 2
→

� O 2 P
→

.

D’où B
→

(P) � j e z
→

� � O 1 P
→

�O 2 P
→

� qui est nul si � O 2 P ,

soit (en posant O 1 O 2 � 2 d ) R 2 �x 2
P �d 2 . Sur les simulations 2 et 3 (doc. 2 et 3)

R �3 ; d �1 , d’où x P � � 3,16 , ce que donne le logiciel.

1) Le champ créé par un solénoïde (cf. chapitre 7, § 5.3.3.) est :

B = (cos a2 – cos a1)

où n est le nombre de spires par unité de longueur et a1 , a2 respectivement les angles
sous lesquels sont vus les rayons des faces d’entrée et de sortie du solénoïde.

Ici, n = = 4 numériquement.

• Au centre : cos a2 = = 0,93 et cos a1 = – cos a2 , ce qui donne,

dans les conditions de la simulation :
B1 = m0nI cos a2 = 4π . 4 . 0,93 = 46,75 .

Ce qui est tout à fait satisfaisant car l’une erreur relative n’est que de 0,5 %.

• Au centre de la face de sortie : cos a2 = 0 et | cos a1 | = = 0,98 ,
d’où :

B2 = | cos a1 | = 2π . 4 . 0,98 = 24,63.

L’erreur relative est, cette fois, d’environ 12 %.

Conclusion
Le champ magnétique à l’intérieur d’un solénoïde est calculable par la formule classique,
même si les spires ne sont pas vraiment jointives.

2) Le champ magnétique étant à flux conservatif, nous devons avoir approximativement :

B1πr1
2 �B2π r 2

2 , soit r2 � r1 � 0,5 R � 0,65 R .

Nous trouvons 0,65 au lieu de 0,64 .

Cet écart provient du fait que B
→

n’est pas uniforme sur la face de sortie, alors qu’il
l’est avec une excellente approximation dans le plan de la spire centrale.

Doc. 1. Simulation 1.

Doc. 2. Simulation 2.

j1 j2

O1 O2O
z

x

y

cylindre 1 cylindre 2

Doc. 3. Simulation 3.

P' P

O

① ②

a2

a1

M
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8. Le théorème d’Ampère

Nous nous intéressons à la carte d’un champ magnétostatique ; rappelons que :

• le champ B
→

est à flux conservatif :

– le flux à travers un tube de champ est le même en toute section ; la norme du champ
est d’autant plus élevée que la section est étroite,

– les lignes de champ de B
→

sont en général des courbes fermées. En particulier, et
contrairement au champ électrostatique E

→

les lignes de champ de B
→

ne peuvent partir
d’un point donné (ou aboutir en ce point) ;

• la circulation du champ magnétique sur un contour peut être non nulle ; il existe
alors, d’après le théorème d’Ampère, un courant enlacé par ce contour.

Étude des divers exemples
• Cas a
Les lignes de champ sont parallèles et la norme du champ est constante le long d’une
ligne : le flux de ce vecteur est donc conservatif. Ce champ est de nature magnéto-
statique. La circulation sur un contour rectangulaire étant non nulle, il existe une den-
sité volumique de courants, perpendiculaire au plan de figure, pointant vers l’avant à
gauche de l’axe central ∆ et vers l’arrière à droite de celui-ci.
Ce champ ne peut être aussi de nature électrostatique (circulation non nulle sur une
courbe fermée).

• Cas b
Le flux sortant d’une surface fermée cylindrique de hauteur h, entourant le point O
est manifestement positif, donc non nul. Le champ considéré ne peut donc pas être un
champ de nature magnétostatique.
La circulation d’un vecteur de la forme V(r) e r

→ (coordonnées cylindriques) est nulle
quel que soit le contour fermé choisi. Ce champ à circulation conservative est
de nature électrostatique. Il existe alors une densité volumique de charges positive dans

cet espace. Si le champ est en , seule la ligne perpendiculaire au plan de la figure

en O porte une densité linéique de charges positive.

• Cas c
Le flux entrant à travers la surface fermée définie par un cylindre d’axe (Oz), de rayon
r et de hauteur h n’est pas nul. Le champ n’est donc pas à flux conservatif ; il ne peut
donc s’agir d’un champ de nature magnétostatique.

La circulation du champ sur un contour fermé constitué d’un cercle de centre O et de
rayon r n’est pas nulle. Il ne peut donc pas s’agir d’un champ de nature électrostatique.

• Cas d
Les lignes de champ sont circulaires, et la norme est la même en tout point d’une ligne
de champ. Ce champ est donc à flux conservatif ; il peut s’agir d’un champ de nature
magnétostatique.
La circulation du champ sur un contour fermé constitué d’un cercle de centre O et de
rayon r n’est pas nulle. Le théorème d’Ampère appliqué à ce contour confondu avec une
ligne de champ montre qu’il existe des courants (volumiques ou non), parallèles à
(Oz). Il pourrait s’agir d’un fil rectiligne confondu avec (Oz), si B(r) varie en , r
étant la distance à l’axe (Oz), dans ce cas le courant serait entrant, dirigé

suivant (�Oz).
La circulation du champ sur le contour fermé n’étant pas nulle, il ne peut pas s’agir
d’un champ de nature électrostatique.

• Cas e
La configuration est semblable à la précédente mais cette fois la norme du champ est
une constante. Ce champ est toujours à flux conservatif ; il peut donc s’agir d’un
champ de nature magnétostatique.
Il existe une répartition volumique de courants perpendiculaires au plan de figure,

pour satisfaire au théorème d’Ampère. Montrons que j (r)
→

� e z
→

.

La circulation de B(r) �cte sur un cercle de rayon r et de centre O nous donne :

B (r) 2π r = � 0 �
r

0
2π r’ d r’ , ce qui est vérifié.

• Cas a

Deux fils sont parcourus par des courants de même sens et d’intensité I . Au centre
O, le champ B

→

est nul et quatre lignes de champ s’y rencontrent.
Lorsque la distance entre deux lignes de champ voisines augmente, le champ diminue.
Le champ est faible entre les deux fils.
En des points éloignés de (Oz), les lignes de champ sont quasi circulaires : l’ensemble
des deux fils se comporte approximativement comme un seul fil de courant double
placé sur (Oz).

+ I

I
O

y

y'

Doc. 1. Simulation 1 : Évolution graphique du champ magnétique sur la droite (y’Oy)
(plan de symétrie des courants �1).
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Le plan médiateur (yOz), et le plan des fils (xOz) sont des plans de symétries �1 et �2 des
courants. Ils sont traversés perpendiculairement par les lignes de champ (cf. S.1 et S.2).
(Oz) étant l’intersection des deux plans de symétrie �1 et �2 des courants, est un axe
de symétrie des courants, d’où B (P 1)

→

��B (P 3)
→

et B (P 2)
→

��B (P 4)
→

ce qui se
vérifie sur la figure. De même nous avons :

si B (P 1)
→

�  , alors B (P 2)
→

�  , B (P 3)
→

� et B (P 4)
→

� .

• Cas b
Deux fils sont parcourus par des courants en sens contraire et d’intensité I (vers l’avant
pour le fil A et vers l’arrière pour le fil B). Si on déplace le long d’une ligne de champ,
le champ est plus intense dans la région centrale, où les lignes de champ sont serrées.

Le plan (yOz) est un plan d’antisymétrie �* des courants ; B est dans ce plan (confondu
avec une ligne de champ). L’intensité du champ décroît rapidement quand le point
s’éloigne des fils. Le plan (xOz) est un plan de symétrie � des courants. B est per-
pendiculaire à ce plan (perpendiculaire aux lignes de champ) (simulation 3).

(Oz) est l’intersection des deux plans de symétrie � et d’antisymétrie �* des courants, d’où
B(P1)
→

�B(P3)
→

et B(P2)
→

�B(P4)
→

, ce qui se vérifie sur la figure. De même nous avons :

si B (P 1)
→

�  , alors B (P 2)
→

�  , B (P 3)
→

� et B (P 4)
→

� .

• Cas c

Un fil est parcouru par un courant selon (Oz) plongé dans un champ B 0
→

uniforme
pointant vers la droite.

Le champ est d’autant plus intense que les lignes de champ se resserrent. Le champ
total est plus intense sous le fil qu’au-dessus.

Le plan (yOz) est un plan � de symétrie des courants (même ceux créant B 0
→

, un
solénoïde infini d’axe horizontal par exemple), B est perpendiculaire à ce plan en
chacun de ces points (simulation 4). Les lignes de champ lui sont toutes orthogonales. Plus
généralement nous avons :

si B (P 1)
→

�  , alors B (P 2)
→

�  .

Il existe un point de champ nul (le point P), où se coupent plusieurs lignes de champ
(ici quatre : remarquer leurs orientations), dans le plan de figure. Ce point P est tel
que :

B0 � �0 (avec r �OP).

• Cas d
Deux fils sont parcourus en sens opposé par un même courant (vers l’arrière pour le
fil A et vers l’avant pour le fil B) dans un champ uniforme pointant vers la droite.

Il n’y a pas de plans de symétrie ou d’antisymétrie des courants ; mais (Oz) est un axe
d’antisymétrie des courants (le champ uniforme peut être celui d’un solénoïde d’axe
horizontal). Les lignes de champ de B

→

obéissent à cette symétrie ; remarquons que :

B
→

(x , y) �B
→

(� x , �y) .

La valeur plus intense du champ est située entre les fils.

Il existe deux points de champ nul (P1 et P2) dans le plan de figure (ici quatre lignes
de champ partent de ces points : remarquer leur orientation). Ces deux points sont
symétriques par rapport à (Oz) .

• Cas e
Deux fils sont parcourus par des courants de même sens (vers l’avant pour les deux
fils) dans un champ uniforme pointant vers la droite.

Le plan (yOz) est un plan de symétrie des courants (le champ uniforme peut être celui
d’un solénoïde d’axe horizontal). Les lignes de champ de B

→

sont orthogonales à ce
plan (simulation 5).

Il existe un point de champ nul dans le plan de figure ; de ce point partent six lignes
de champ (remarquer leurs orientations).

�B x

�B y

B x

B y

�B x

�B y

�B x

�B y

�B x

�B y

B x
B y

�B x

�B y

�B x

�B y

�B x

�B y

B x

B y

x
x'

I O I

Doc. 2. Simulation 2 : Évolution graphique du champ magnétique sur la droite (x’Ox)
(plan de symétrie des courants �2).

xx' – II

O

Doc. 3. Simulation 3 : Évolution graphique de B
→

sur l’axe (x’Ox) .

y

xI

y'

Ox'

Doc. 4. Simulation 4 : Évolution graphique de B
→

sur l’axe (y’Oy).
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8. Le théorème d’Ampère

• Cas f
Trois fils sont parcourus dans le même sens par un même courant et placés aux sommets
d’un triangle équilatéral.
Le centre O est le seul point de champ nul dans le plan de figure ; de ce point partent
six lignes de champ (remarquer leurs orientations).
Les lignes de champ sont beaucoup plus espacées près du centre qu’au voisinage des
fils où le champ est intense.
Le plan (yOz) est un plan de symétrie � des courants. Les lignes de champ de B

→

sont
orthogonales à ce plan, sauf au point de champ nul O. Il existe deux autres plans
vérifiant cette propriété déduits du précédent par des rotations de 2π/3 et 4π/3 autour
de (Oz) .

• Cas g
Même configuration que le cas f sauf que le fil B est parcouru vers l’arrière par le
courant d’intensité I. Noter la symétrie par rapport au plan médiateur de AC qui
contient le fil B et l’existence de deux points de champ nul (dans le plan de
figure) contenus dans ce plan de symétrie � . Noter que le champ est intense entre les
trois fils dans le plan de symétrie, et qu’à grande distance des fils la topographie est
approximativement celle d’un fil unique placé dans la région centrale, du côté de AC,
sur le plan de symétrie, et parcouru par un courant d’intensité I (simulation 6).

• Cas h
Quatre fils sont parcourus par des intensités identiques, et de même sens, disposés
aux sommets d’un carré. Remarquer les symétries.

• Cas i
Quatre fils sont parcourus par des intensités identiques disposés aux sommet d’un carré
A et B : �I , et C et D : �I . Remarquer les symétries, ainsi que B sur le plan (yOy’)
(simulation 7).

• Cas j
Dans le cas j, les six fils disposés aux sommets d’un hexagone régulier sont
parcourus par des intensités identiques et de même sens.

– I

II

y

x

Doc. 6. Simulation 5 : Lignes de champ de B
→

« loin » des trois lignes.

y

x

y'

x'

A

I I

O
B

Doc. 5. Simulation 5 : Évolution graphique de B
→

sur l’axe (y’Oy).

– I – I

y

y'

+ I+ I

Doc. 7. Simulation 7 : Évolution de B
→

sur l’axe (y’Oy) .
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Dipôle
magnétique

Nous verrons que toute distribution de courants
possède un moment dipolaire magnétique
qui permettra de déterminer le champ magnétique
créé à grande distance.

Nous découvrirons alors une analogie forte
(mais non totale)
avec le champ dipolaire électrostatique
étudié au chapitre 5.

Les propriétés magnétiques de la matière sont,
pour l’essentiel, interprétées par l’existence
de dipôles magnétiques microscopiques.
Le champ magnétique créé par un aimant,
par exemple, résulte de la superposition
des champs de tels dipôles.

O B J E C T I F S

■ Modèle du dipôle.
■ Champ dipolaire.
■ Comparaison avec le dipôle électrostatique.

P R É R E Q U I S

■ Champ magnétique.
■ Dipôle électrostatique.
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Moment dipola ire1
1.1. Surface associée à un contour
Considérons un contour G (fermé) orienté (doc. 1) et une surface S

→

s’appuyant
sur ce contour. L’orientation de la surface s’effectue en utilisant celle du contour
(cf. chapitre 8, § 1.5.) : un tire-bouchon tournant dans le sens choisi pour G tra-
verse S dans le sens de ses vecteurs unitaires normaux n→ .

Nous appellerons vecteur surface S
→

le vecteur défini par :

S
→

���
S

n→dS � ��
S

dS
→

.

Le vecteur surface S
→

ne dépend pas du choix de la surface utilisée pour le défi-
nir : il ne dépend que du contour G et de son orientation.

Le vecteur surface S
→

est une grandeur caractéristique du contour G orienté.

Par exemple, le vecteur surface du contour circulaire de rayon a du document 2
est :

S
→

�πa 2 n→ .

1.2. Moment magnétique d’un courant filiforme

La norme du moment magnétique s’exprime en A . m2 .

Dans le cas d’une spire circulaire de rayon a, parcourue par un courant d’intensité
I (doc. 2), le moment magnétique est : �

→

� Iπa2 n→ .

Sur le document 3a, le plan P1 de la spire est un plan de symétrie de la distribu-
tion des courants et le moment magnétique �

→

est perpendiculaire à ce plan. Tout
plan P2 contenant l’axe de la spire est un plan d’antisymétrie et le moment magné-

tique �
→

est contenu dans ce plan. Nous reconnaissons là deux proriétés caracté-
ristiques des vecteurs axiaux.

Remarque

Nous verrons, plus loin, qu’une boucle élémentaire de courant de moment magné-
tique �

→

présente de fortes analogies de comportement avec un dipôle électro-
statique de moment dipolaire p→. Des différences fondamentales distinguent cepen-
dant ces deux entités. Montrons ainsi que le moment dipolaire p→ est un vecteur
polaire.

En effet, tout plan P1 contenant le dipôle (doc. 3b) est un plan de symétrie de la
distribution de charges et le moment dipolaire p→ est contenu dans ce plan. Le plan
médiateur P2 du dipôle est un plan d’antisymétrie et le moment dipolaire p→ est
normal à ce plan. Nous reconnaissons là deux propriétés caractéristiques des vec-
teurs polaires.

Le moment magnétique �
→

d’un circuit filiforme est un vecteur axial.

Le moment magnétique d’une boucle G de courant d’intensité I (orien-
tée dans le sens du courant) et de vecteur surface S

æÆ

est :

�
æÆ

= IS
æÆ

.
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9. Dipôle magnétique

Doc. 1. Surface S s’appuyant sur un
contour � orienté.

�

S

n

Doc. 2. Surface orientée d’un contour
circulaire.

S = a2

�

n

� n

a

Doc. 3a. Étude des symétries sur un
dipôle magnétique.

= I a2� n

�

�1

�2

I

�

Doc. 3b. Étude des symétries pour un
dipôle électrostatique. ©
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1.3. Moment magnétique d’une distribution de courants
Dans le cas d’une distribution de courants limités dans l’espace, la définition du
moment magnétique sera généralisée en considérant qu’il s’agit d’un ensemble
continu de boucles de courant filiformes (tubes de courants élémentaires) :

�
→

��d �
→

.
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9. Dipôle magnétique

Moment magnétique atomique

Un électron, de charge q ��e et de masse me , décrit,
dans une représentation classique, une trajectoire cir-
culaire d’axe (Oz) et de rayon r autour du noyau ponc-
tuel en O . On admet que le moment cinétique de l’élec-
tron par rapport à l’axe (Oz) est :

L z �
 �

(h est la constante de Planck : h � 6,63 . 10�34 J . s).
Calculer le moment magnétique associé à ce mouve-
ment orbital de l’électron.

L’électron tournant à vitesse v constante dans le sens
positif par rapport à (Oz) sur sa trajectoire circulaire, le
moment cinétique par rapport à (Oz) est :

L z � m e v r , avec L z � 
 par hypothèse.

L’électron décrit N � tours par unité de temps et

l’intensité associée à un tel mouvement est :

I �qN �� �� .

Le moment magnétique correspondant, mesuré algébri-
quement sur (Oz), est :

� � π r 2 I �� , avec �
→

= � ez
→

Ce calcul élémentaire fait apparaître le magnéton
de Bohr :

�B � � 9,26 . 10�24 A. m2 ,

qui sert d’unité de mesure des moments magnétiques en
physique atomique. Les électrons des atomes présen-
tent des moments magnétiques orbitaux (associés à leur
mouvement autour du noyau) et des moments magné-
tiques intrinsèques associés à leur « spin ». Le couplage
de ces moments magnétiques, selon les lois quantiques,
fournit un moment magnétique atomique éventuellement
non nul. Les atomes se comportent alors comme des
dipôles magnétiques interagissant avec un champ magné-
tique extérieur.

La notion de dipôle magnétique est utilisée avec profit à
l’échelle atomique pour interpréter les propriétés magné-
tiques de la matière.

Application 1

Une sphère chargée unifor-
mément en surface, de
charge totale q et de rayon
R, tourne à la vitesse angu-
laire ! autour de (Oz).
Déterminer le moment
magnétique de la distribu-
tion de courants associée.

Utilisons les coordonnées sphériques d’axe (Oz) et
découpons la sphère en spires de largeur Rd� (doc. 4).
L’intensité de cette spire, associée au mouvement de

rotation, est, en comptant la charge traversant une sec-
tion droite Rd� par unité de temps :

d I � � (2πR 2 sin � d�) ,

� � désignant la densité surfacique uniforme

de charges. Le moment élémentaire d�
→

associé à cette
spire est d�

→

�πR 2 sin 2 � d I ez
→ , soit :

d�
→

� R 2 sin 3 � d� ez
→ .

Comme �π
0

sin 3 � d� � , le moment résultant est :

�
→

� ez
→ .

Application 2
z

!

�

Rd�

O
R

Doc. 4.



Champ magnétostat ique2 créé par un dipôle

2.1. Approximation dipolaire

Une boucle de courant crée, en tout point M de l’espace, un champ magnétostatique
donné par la loi de Biot et Savart.

À grande distance de la boucle ( �� 1 pour une spire circulaire de rayon a

(doc. 5a)), la norme du champ magnétique décroît en , comme il est possible

de s’en convaincre en considérant l’expression du champ créé par une spire en un
point de son axe (cf. chapitre 7, Application 3) :

.

À grande distance (z >> R), l’expression précédente se simplifie en :

puisque �
→

= I πR2 ezm .

L’exercice 1, page 170, propose une autre vérification de cette propriété qui a son
homologue pour le dipôle électrostatique : dans l’approximation dipolaire, la norme

du champ E
→

(M) créé par un dipôle électrostatique décroît en .

Il est possible de démontrer, qu’à grande distance d’une boucle de courant (approxi-
mation dipolaire), le champ magnétique B

→

(M) créé par la boucle ne dépend que
de r→ = OMo , du moment magnétique �

→

et de l’angle q = (�
→

, r→).

De nouveau, cette propriété n’est pas sans rappeler celle du dipôle életrostatique
qui est, lui aussi, entièrement caractérisé, pour ses effets à grande distance, par son
moment dipolaire p→.

Cette similitude fait souvent nommer une boucle élémentaire de courant, dipôle
magnétique.

2.2. Analogie avec le dipôle électrostatique

Considérons un doublet de charges �q et �q (distantes de a) centré en O et de
moment dipolaire p→ �qa e→z � p e→z . Tout plan contenant l’axe (Oz) est un plan de
symétrie. Les lignes de champ du vecteur E

→

, de révolution autour de l’axe (Oz),
sont contenues dans de tels plans. Quelques lignes de champ électrostatique sont
représentées dans un plan contenant (Oz) sur le document 6a.

Considérons à présent une spire circulaire de rayon a, d’axe (Oz) et de moment
dipolaire magnétique �

→

�Iπa 2 e→z � � e→z . Tout plan contenant l’axe (Oz) est un
plan d’antisymétrie. Les lignes de champ du vecteur axial B

→

, de révolution autour
de l’axe (Oz), sont contenues dans de tels plans. Le document 6b représente quelques
lignes de champ magnétostatique dans un plan contenant (Oz) .

Dans l’approximation dipolaire, une boucle de courant est entièrement
caractérisée par son moment magnétique �

→

.
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9. Dipôle magnétique

Doc. 5a. Boucle de courant.

�

a

r

M

O

Doc. 5b. Champ Bm(M) créé par une
spire en un point de son axe.



L’extension de la zone apparaissant sur ces documents est de l’ordre de (10 a) 2 .
Les deux cartes de champ obtenues sont clairement distinctes, car les comporte-
ments des champs au voisinage de leurs sources sont très différents : le champ élec-
trostatique diverge à partir de ses sources (les charges) alors que le champ magné-
tostatique tourbillonne autour des siennes (les courants).

Si nous observons ces cartes de champ à une échelle beaucoup plus grande (zone
de l’ordre de (100a )2 nous obtenons dans les deux cas la même configuration des
lignes de champ (doc. 7).

Le champ électrostatique d’un dipôle p→ �p e→z et le champ magnéto-
statique d’un dipôle �

→

� � e→z ont le même comportement à grande
distance r �� a .
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9. Dipôle magnétique

Doc. 6a. Lignes de champ électrostatique d’un doublet � q
et �q .

Doc. 6b. Lignes de champ magnétostatique d’une spire.

– q
+ q

p ou �

� Doc. 7. Ligne de champ d’un dipôle
qu’il soit électrique ou magnétique.

z z



2.3. Application au calcul du champ magnétostatique
2.3.1. Champ dipolaire
Le champ électrostatique d’un doublet de charges a pour coordonnées sphériques
d’axe (Oz) (doc. 8), dans l’approximation dipolaire :

Er � , E� � et E � 0 .

Du fait de l’analogie observée à grande distance des sources, nous supposerons que
le champ B

→

créé au point M de coordonnées sphériques (r, �,  ) par un dipôle
�
→

� � e→z placé en O est de la forme :

Br � 2B 0 a 3 , B� � B 0 a 3 et B � 0 .

Le facteur B 0 est une constante homogène à un champ magnétique que nous
allons déterminer.
Remarque : Il est possible d’obtenir ce résultat par développement du champ B

→

créé par une spire en un point éloigné. Un tel calcul est assez fastidieux.

2.3.2. Détermination du champ par identification
Pour trouver la constante B0 , nous pouvons comparer le champ dipolaire précédent
avec le champ créé par une spire en un point très éloigné sur l’axe de celle-ci (doc. 9).
Sur son axe (Oz), le champ de la spire est (cf. § 2.1) :

�� 1 , B (z)� .

Identifiant cette valeur à Br �2B 0 , avec r = | z | nous obtenons :

B 0 a 3 � .

Les composantes Br , B� et B , en coordonnées sphériques, du champ d’un dipôle
magnétique placé en O et de moment �

→

�� e→z sont donc :

.
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M

O

Br er

B�

�

e�

B(M) ou E (M)

z

r

� ou p

Doc. 8.

�

z

M

B (M)O

I
P

a

Doc. 9.

L’expression du champ magnétique du dipôle �
→

est en coordonnées

sphériques d’axe (O, �
→

) : B
→

(M) � .

Son expression intrinsèque est donc : B
→

(M) � .

Soit un dipole magnétique de moment �
→

porté par (Oz).
Déterminer en coordonnées polaires (r, �) les équations
des lignes de champ magnétique d’un dipôle magnétique
dans un plan contenant l’axe (Oz).

Une ligne de champ étant une courbe (plane ici) en tout
point M de laquelle le champ B

→

est tangent, les vecteurs
dM

→

et B
→

sont colinéaires : dM
→

� B
→

= 0
→

.

En coordonnées sphériques (polaires dans un demi-plan
méridien), nous obtenons :

, soit .

Par intégration, il vient r �A sin2 � , A étant une constante
dépendant de la ligne considérée.

Application 3
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Comparaison des propriétés des champs3 Em et Bm stat iques
À ce stade, nous pouvons résumer et comparer les propriétés des champs électro-
statique et magnétostatique.
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9. Dipôle magnétique

champ électrostatique champ magnétostatique

source charges fixes charges en mouvement
(courants)

champ Em(M) =

(loi de Coulomb)
Em est un vecteur polaire

Bm(M) =

(loi de Biot et Savart)
Bm est un vecteur axial

particule P
de charge qP

δqP = qP

Em est défini et continu en tout point
de l’espace sauf sur la charge

δCPm = qPvl (P)
Bm est défini et continu en tout point
de l’espace sauf sur la trajectoire

distribution
volumique

δqP = r(P) dt
Em est défini et continu

en tout point de l’espace

δCPm = jvl (P) dt
Bm est défini et continu

en tout point de l’espace

distribution
surfacique

δqP = s (P) d S
Em est défini et continu en tout point
de l’espace, sauf sur la distribution
où il subit une discontinuité nor-
male : Em2 – Em1 = nl 1→2

δCPm = jSl (P) d S
Bm est défini et continu en tout point
de l’espace, sauf sur la distribution
où il subit une discontinuité tan-
gentielle : Bm2 – Bm1 = m0 jSl ∧ nl 1→2

distribution
linéique

distribution linéique :
δqP = l (p) d	

Em est défini et continu en tout point
de l’espace, sauf sur la distribution

δCPm = I d	m

Bm est défini et continu en tout point
de l’espace, sauf sur la distribution

force Fm(M) = δqM Em(M) Fm(M) = δCMm (M) ∧ Bm(M)

lignes
de champ

Em diverge à partir
de ses sources et ses lignes
de champ sont non fermées

Bm tourbillonne autour
de ses sources et ses lignes

de champ sont fermées

circulation la circulation de Em

est conservative : Em(M) . d	k = 0

Em dérive d’un potentiel :

V =

la circulation de Bm est non
conservative :

Bm(M) . d	k = m0 ekIk

(théorème d’Ampère)
relation entre le champ et ses sources

flux le flux de Em n’est pas conservatif :

(théorème de Gauss)
relation entre le champ et ses sources

le flux de Bm est conservatif :

dipôle le moment dipolaire
pk = qP–P+p

est un vecteur polaire

le moment magnétique �m = ISm

est un vecteur axial

champ
dipolaire Em(rn ) = Bm(rn ) =
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9. Dipôle magnétique

● MOMENT MAGNÉTIQUE
Le moment magnétique d’une boucle de courant d’intensité I (orientée dans le sens du courant) et de surface
Sm, est :

�
→

= IS
→

.

Dans le cas d’une spire circulaire :
�
→

= Iπa2n→.

Le moment magnétique est un vecteur axial.

● CHAMP DIPOLAIRE MAGNÉTIQUE
En des points très éloignés de la boucle de courant, son champ magnétique tend vers celui d’un dipôle magné-
tique de moment �

→

.

Le champ électrostatique d’un dipôle p→ = p→ez
→ et le champ magnétostatique d’un dipôle �

→

= �
→

ez
→ ont le

même comportement à grande distance r >> a .

L’expression du champ magnétique du dipôle �
→

est en coordonnées sphériques d’axe (O, �
→

) :

B
→

(M) = .

Son expression intrinsèque est donc :

B
→

(M) = .

C Q F R

Avez-vous retenu l’essentiel ?

✔ Définir le moment magnétique �
→

d’une boucle de courant de vecteur surface S
→

et d’intensité I .

✔ Donner, dans l’approximation dipolaire, l’expression du champ magnétique B
→

(M) créé par un dipôle magnétique
de moment �

→

.

✔ Retrouver l’expression intrinsèque du champ magnétique créé par un dipôle magnétique de moment M
→

.

Contrôle rapide

Du tac au tac (Vrai ou faux)

1. Deux surfaces s’appuyant sur le même contour
n’ont pas obligatoirement même vecteur surface.

❑ Vrai ❑ Faux

2. Le moment magnétique, tout comme son homo-
logue électrostatique, le moment dipolaire, est
un vecteur polaire

❑ Vrai ❑ Faux

3. Le champ électrostatique d’un dipôle pÆ = pÆez
æÆ

et le champ magnétostatique d’un dipôle
}

æÆ

= }
æÆ

ez
æÆ ont le même comportement dans tout

l’espace.

❑ Vrai ❑ Faux

4. Par analogie avec le dipôle électrostatique, il est
possible d’analyser un dipôle magnétique comme
un doublet de « charges magnétiques ».

❑ Vrai ❑ Faux
� Solution, page 172.



Champ magnétique
en un point du plan d’une spire

Une spire circulaire de centre O, de rayon a et d’axe (Oz) est
parcourue par un courant d’intensité I . Un point courant P
de la spire est repéré par l’angle  que fait le vecteur OP

→

avec
l’axe (Ox) de référence. Exprimer sous forme d’une intégrale
le champ magnétique créé en un point M de l’axe

(Ox) très éloigné de la spire � �� 1� .

Effectuer un développement limité en u � de l’intégrale

et obtenir la partie principale du champ B
→

(M) . Vérifier que
ce champ est bien celui créé par un dipôle magnétique au
même point.

Champ magnétique dans le plan
d’un disque tournant

Un disque conducteur de centre O et de rayon R tourne à la
vitesse angulaire ! constante autour de son axe (Oz) .
Ce disque porte une charge totale q répartie avec un densité
surfacique totale (les deux faces sont comptées) :

,

où r � OP désigne la distance du centre à un point P du disque.

1) Trouver la valeur de �0 en fonction de q et de R .

2) Quelle est l’expression du champ magnétique créé par une
telle distribution en un point M situé dans le plan du disque
et supposé très éloigné de celui-ci r �OM �� R .

Chaîne linéique de dipôles magnétiques

Une chaîne linéique de dipôles magnétiques est répartie sur
l’axe (Ox) d’un repère orthonormé (O ; e x

→ , e y
→ , e z

→), avec
une densité uniforme � : un élément de longueur d x de la
chaîne se comporte comme un dipôle magnétique de moment :

d �
→

��dxe x
→ .

1) a) Quelle est a priori la direction du champ magnétique
créé par cette distribution en un point quelconque de l’espace ?
Montrer qu’il suffit de déterminer ce champ sur l’axe (Oy)
(par exemple).

b) Par un calcul direct, vérifier que ce champ est nul.

2) Que peut-on conclure de ce résultat concernant le champ
magnétique créé par un solénoïde circulaire infiniment long,
en un point extérieur supposé très éloigné de l’axe du solé-
noïde ? En déduire le champ magnétique créé par un solénoïde
infiniment long en tout point intérieur au solénoïde.

Mesure du moment dipolaire magnétique
d’un aimant

Soit un petit aimant de moment magnétique de norme �
inconnue. On dispose d’une aiguille aimantée mobile sans-
frottements autour d’un axe vertical. À l’équilibre, cette aiguille
est orientée dans le sens de la composante horizontale du champ
auquel elle est soumise (voir exercice 7). Comment peut-on
mesurer le moment � de l’aimant en un lieu où la composante
horizontale BH du champ magnétique terrestre est connue ?

Préciser le protocole expérimental pour le cas d’un petit
aimant qui aurait le même moment magnétique qu’une bobine
de rayon moyen R �50 cm , comportant N � 10 spires par-
courues chacune par un courant d’intensité I � 2 A ,
sachant que B H � 2 .10�5 T .

Latitude géographique et inclinaison
du champ magnétique terrestre

Le champ géomagnétique BT
→

(champ dont la Terre est la source)
est caractérisé en tout lieu par sa norme, sa déclinaison D (angle
de la composante horizontale de B T

→

avec le Nord géogra-
phique) et son inclinaison I (angle que fait BT

→

par rapport au
plan horizontal). Cet exercice propose une première approche
très simplifiée du géomagnétisme, dans laquelle on suppose en
particulier que la déclinaison est nulle en tout point.

1) Un dipôle magnétique de moment �
→

, placé en O, crée en
tout point P de l’espace un champ magnétique B

→

(P) . On
utilise les coordonnées sphériques du point P : OP� r et
� � (�

→

, OP
→

) .
a) Rappeler l’expression de B

→

(P) . Tracer quelques lignes de
champ.
b) On pose a �(OP

→

, B
→

(P)) ; quelle relation simple lie a et � ?

2) En supposant que le champ terrestre soit dû à un dipôle
magnétique confondu avec l’axe de rotation terrestre, quelle
serait la relation liant la latitude l du lieu et l’inclinaison du
champ B T

→

en ce lieu ?

Exercices
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Lignes de champ et champ magnétique
créés par un dipôle magnétique

Soit un dipôle magnétique de
moment �

→

�� e z
→ placé

en O . On repère un point M
quelconque par ses coordon-
nées sphériques de centre O
et d’axe (Oz) :

r , � et  .

Dans un demi-plan méridien ( �cte) l’équation d’une ligne
de champ donnée est de la forme r � A sin2 � .

1) En déduire que le flux du champ magnétique créé par ce
dipôle à travers une surface s’appuyant sur un cercle � d’axe
(Oz), vu sous l’angle � du point O, est de la forme :

� � .

Montrer que l’étude du flux du champ B
→

d’une spire circu-
laire centrée en O et d’axe (Oz) à travers un cercle � de même
axe (Oz) très éloigné de la spire, suggère que :

� � cte .

Nous ferons cette hypothèse pour la suite. Préciser la valeur
de la constante multiplicative.

2) En choisissant judicieusement la surface s’appuyant sur �,
calculer le flux � du champ magnétique du dipôle à travers
� sous forme d’une intégrale où n’intervient que la seule
composante radiale du champ B

→

. Compte tenu du résultat pré-
cédent conclure que cette composante radiale B r est de la

forme Br �2 B 0 , B 0 étant une constante à expliciter.

3) Par un raisonnement équivalent, en déduire l’expression
de la composante orthoradiale B� du champ créé par le dipôle.

Mesure de la composante horizontale
du champ magnétique terrestre

Un petit aimant, ou une aiguille aimantée, assimilable à un
dipôle magnétique de moment �

→

(rigidement lié à l’aimant)
subit, lorsqu’il est plongé dans un champ magnétique B

→

uni-
forme, un couple de moment �

→

� �
→

� B
→

.

Cette expression est généralisable, concernant le moment des
forces au point où est placé l’aimant, lorsque le champ
magnétique n’est pas uniforme.

On se propose de mesurer la norme de la composante hori-
zontale BH

→

du champ magnétique terrestre en un lieu. À
Paris BH est de l’ordre de 2 .10�5 T . Pour cela on dispose
d’une petite aiguille aimantée montée sur pivot, donc mobile
autour d’un axe vertical sans frottements. Ce petit aimant est
placé au centre O d’une bobine plate comportant N spires
circulaires de rayon R chacune (on néglige la section des fils)
contenue dans un plan vertical et alimentée par un courant
continu d’intensité I réglable.

Les rotations éventuelles de l’aiguille sont mesurables sur un
cercle gradué, la graduation 0 correspondant à la position de
l’aiguille dans le plan de la bobine.

1) Méthode de la boussole des tangentes

Sachant que l’on peut choisir le plan de la bobine, proposer
un protocole de mesure de la composante BH

→

du champ
magnétique terrestre.

L’expérience a été réalisée avec BH
→

contenue dans le plan
de la bobine. Lorsque l’intensité passe d’une valeur nulle à
la valeur I l’aiguille tourne d’un angle a . En déduire BH

→

.

Données : N �5 ; R � 12 cm ; I � 0,381 A ; a � 20° .
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9. Dipôle magnétique
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�
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P

��
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B

��

P

O

B�

�

�
z

�

C

M

r

O



2) Méthode des oscillations

On utilise le même matériel que précédemment mais cette
fois la position de référence (ou d’équilibre) de l’aiguille est
perpendiculaire à la bobine.

On désigne par BC la norme du champ magnétique créé par
ce circuit.

On suppose I tel que :

B C � B H .

Montrer que la position d’équilibre de l’aiguille aimantée
n’est pas modifiée par l’existence d’un tel courant I dans
la bobine.

Montrer que la période des petites oscillations de l’aiguille,
préalablement écartée de sa position d’équilibre, dépend du
sens du courant dans le circuit. Désignant par T et par T’ les
périodes des oscillations quasi sinusoïdales observées pour

les deux sens (à préciser), établir que B H � B C .

B
→

(M) � est porté par (Oz) (le plan (xOy) est un plan de symétrie

des courants).

Nous obtenons � d , puis

B
→

(M) � , avec d .

En se limitant aux termes en u 2 :

F (u) � [�u cos  �u 2 (1 � 3 cos 2  )] d  ��πu 2 ,

soit B
→

(M ) � .

Ce qui correspond bien au cas du dipôle .

1) Nous avons q � � d S .

La charge portée par une couronne de
rayon r et de largeur d r est égale à :

d q �� 2π r d r .

Soit q � 2π r d r

�2π� 0 R 2 .

Pour l’intégration, poser u = sin2j .
D’où :

et q �2π� 0 R 2 et � 0 � .

2) L’intensité � I circulant dans la couronne précédente est égale à (T étant

la période de rotation du disque) : � I � ! . D’où le moment magnétique associé :

��
→

� !
→π r 2, ainsi que le moment magnétique de l’ensemble :

�
→

� r 3 d r ,

soit :
�

→

� !
→

R 2 .

Remarque :

� sin3  d  � en posant u � sin 2  .

Exercices
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Corrigés
Solution du tac au tac, p. 169.
1. Faux ;
2. Faux ;

3. Faux;
4. Faux.

I

O xz

y

M
C

a B = Bez

ePMP

 

r
! dr

R



B
→

(M) � – .

1) a) Un dipôle magnétique peut être remplacé par une spire de petite dimension.

Tout plan (P ) perpendiculaire à (Ox) passant par P est un plan de symétrie des courants,

donc B
→

(P) est perpendiculaire à ce plan et parallèle à (Ox) . Le système de courants est

invariant par translation ou rotation suivant (Ox), donc :

B
→

(P) �B (�) e x
→ avec � �HP .

D’où B
→

(P) ne dépend que de la distance à l’axe (Ox) .

b) Calculons d B x en P (OP �y) dû à d�
→

situé sur (Ox) .

d Bx = d x .

Posons u �cos � ; d’où r � ; x � ; d x � d �

et d x � (3 u 2 �1) d u .

Alors B x (P) � .

2) La chaîne linéique précédente de moments magnétiques peut modéliser un ensemble
de spires de même rayon R et d’axe (Ox), régulièrement réparties, donc un solénoïde
infini. En un point éloigné de l’axe de ce solénoïde, le champ magnétique est donc nul.
Étudions la relation entre � et le nombre de spires de rayon R par unité de longueur
n, parcourues par un courant I . Le moment magnétique d’une spire étant égal à
IπR 2 , nous avons � d x �n d x IπR 2 , soit � � n IπR 2 .

Retrouvons B
→

à l’intérieur du solénoïde par application du théorème d’Ampère.
La circulation de B

→

sur la courbe ABCD orientée nous donne :
(B
→

// e x
→ ) B int l ��0n , I ,

soit B int ��0nI , qui était le résultat attendu.

L’ensemble est disposé comme ci-dessus dans un plan horizontal.

.

L’incertitude relative sur � est égale à :

.

Il faut donc choisir r pour que a � soit r � .

A.N. : � �NπR 2 I � 15,7 A .m 2 , cela donne r � 0,54 m , ce qui est facilement
réalisable.

1) a) B
→

(P) �B r e r
→

�B� e �
→

, B r � cos � et B� � sin � .

b) tan a � tan � .

2) En tenant compte de l’orientation de �
→

(7,8 . 1022 A . m2) , nous obtenons :

a � �I et � � � l , d’où tan I � tan l .

1) Le flux de B
→

à travers toute surface s’appuyant sur un tube de champ

donné ne dépend pas du choix de cette surface ( B
→

est un vecteur à flux conservatif).
Les tubes de champ peuvent être définis par une équation de la forme � �cte .

Engendrés par les lignes de champ, leur équation est donc aussi �cte .

Nous en déduisons � � f .
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9. Dipôle magnétique
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• Soit une spire circulaire d’axe (Oz) parcourue par un courant d’intensité I . Le flux
� de B

→

à travers un cercle � très éloigné de la spire, de rayon a et de même axe (Oz)

est donné par � �

�le champ magnétique sur l’axe de la spire étant égal à B � � .

Soit � � . Sachant que a � r sin � et z � r cos � � r , nous obtenons :

� � .

2) Sachant que B
→

�B r e r
→

�B � e �
→ , et que nous désirons calculer B r , prenons

pour surface s’appuyant sur le contour g une calotte sphérique de centre O .

Nous obtenons alors � � 2π r sin u B r (r, u) r d u � ou encore :

sin u Br (r, u) d u � .

La dérivation par rapport à � nous donne B (r, �) sin � � ,

soit : Br (r, �) � .

3) Nous désirons ne faire intervenir que B� .

Nous savons que B r varie en , donc le flux de B
→

à travers S∞ est nul. Le flux

de B
→

sur la surface conique est donné par :

� � 2π u sin � d u B� (u, �) � , soit (q est constant) :

u B� (u, �) d u � .

La dérivation par rapport à r nous donne :

(r B� (r, �)) r � ∞ �r B� (r, �) � .

Le champ magnétique étant en , (r B� (r, �)) r � ∞ � 0 , soit :

B� (r, �) � .

G
→

� �
→

� B
→

, donc l’aiguille aimantée, assimilable à un dipôle magnétique,
s’oriente dans le sens du champ magnétique.

1) Si aucun courant ne circule dans la
bobine, l’aiguille s’oriente dans la
direction de BH

→

.
Si le courant I circule, la bobine crée un
champ BC

→

et l’aiguille s’oriente dans la
direction de B

→

� BH
→

� BC
→

.

D’où : tan a � � ,

soit : B H � .

A.N. : B H � 2,7 .10� 5 T .

2) B
→

total � BH
→

� BC
→

est toujours dans la direction et dans le sens de
BH
→

(BC < BH) : l’aiguille conserve la même position d’équilibre.

Le théorème du moment cinétique appli-
qué à l’aiguille aimantée et de
moment d’inertie J0 par rapport à un
axe perpendiculaire au plan de la
figure passant par O donne :

J0 ��� B sin � .

Pour les petits angles, les oscillations sont harmoniques et de période : }

T �2π .

En considérant les deux orientations de l’intensité dans la bobine, nous obtenons
(cf. schéma) :

• cas a) : T �2π , avec B � BH �BC ;

• cas b) : T’ � 2π , avec B’ � BH �BC .

D’où .

Corrigés
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surface « sphérique »

de centre O s'appuyant

sur le contour g

trace

du contour g

O
�

�

(S)

O
�

�

trace

du contour g

surface cônique

se refermant
à l'infini sur

la calotte sphérique
de centre O : S�

�

O
B

�

BH B

NI

BC

�

BC BH

NI
Btotal

BC BH
NI

Btotal

a) b)
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La force
de Lorentz

Hendrik-Antoon Lorentz (1853-1928) est un physicien
hollandais, très célèbre pour ses travaux en

électromagnétisme de la matière. La force
électromagnétique qui s’exerce sur une particule

chargée porte son nom. Prix Nobel en 1902.

Joseph-John Thomson (1856-1940), physicien anglais,
mesure la grandeur (e/m) des électrons en 1891

et il réalise, en 1913, un spectrographe de masse mettant
en évidence l’existence d’isotopes

(méthode des paraboles). Prix Nobel en 1906.

Pierre-Simon Laplace (1742-1827), physicien français
auteur de nombreux travaux (mécanique céleste,

théorie du potentiel, vitesse du son…) a énoncé de
manière précise les lois de la magnétostatique

relatives au champ magnétique créé par un élément
de courant (loi actuellement dite de Biot et Savart)

et la force subie par un élément de courant :
force de Laplace.

Edwin-Herbert Hall (1855-1938) découvre
l’effet qui porte son nom.

O B J E C T I F S

■ Mouvements de particules chargées dans des
champs électriques ou magnétiques indépen-
dants du temps.

■ Modèle de conduction électronique dans les
métaux.

■ Force de Laplace s’exerçant sur un élément
de conducteur.

■ Origine physique du champ de Hall.

P R É R E Q U I S

■ Champs électrostatique et magnétostatique.

■ Mécanique du point matériel.

10
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10. La force de Lorentz

Changement de référentiel pour Ek et Bk

Soit deux référentiels galiléens � et �’ . Désignons
par un la vitesse de �’ par rapport à � . Soit vn et
v’k les vitesses dans � et �’ d’une particule chargée.
En traduisant qu’en mécanique newtonienne la force est
indépendante du référentiel d’étude, trouver les rela-
tions reliant les champs E’M et B’M dans �’ associés
aux champs EN et BN dans � , pour une position don-
née.

Sachant que vn = v’k + un , nous devons identifier :

FNLo = q [EN + (v’k + un) ∧ BN]

= q [(EN + un ∧ BN) + v’k ∧ BN)]

avec FNLo = q (E’M + v’k ∧ B’M) .

L’identification des deux expressions nous donne :

E’M = EN + un ∧ BN et B’M = BN .

Ces relations traduisent les effets d’un changement de
référentiel pour les champs électromagnétiques dans le
cadre de la mécanique classique.

Application 1

1.1. La force de Lorentz

1.1.1. Formulation

1 L’interaction électromagnétique

C’est Lorentz qui, le premier, a décrit la force électromagnétique agissant sur
une particule chargée.

Nous nous placerons dans le cadre de la mécanique classique et dans des réfé-
rentiels galiléens.

F

La force électromagnétique subie par une particule de charge q et de
masse m , se trouvant, à la date t , au point M du référentiel galiléen �� ,
en présence d’un champ électrique (M , t) et d’un champ magnétique

(M , t) , et se déplaçant à la vitesse (M , t) / �� est donnée par :

Lo = q [ (M , t) + (M , t) / �� ∧∧ (M , t)] .

Dans le cas de champs permanents et indépendants du temps nous avons :

Lo = q ( + ∧∧ ) .v

F

B
E

vE

BF E

B

v

Cette force de Lorentz traduit l’une des interactions fondamentales de la physique ;
son domaine de validité n’est pas limité dans le cadre de nos connaissances
actuelles.

Les champs et introduits ici sont créés par des sources (charges et cou-
rants) et définis relativement au référentiel � .

Comme toute force d’interaction, Lo ne dépend pas du référentiel alors que

la vitesse en dépend. Les champs et peuvent donc dépendre du référentiel.

Remarquons que les champs et sont de natures différentes ; le rapport

est homogène à une vitesse. Dans le Système International d’unités, E s’exprime
en volts par mètre (V . m – 1) et B en testa (T).

La charge q est une propriété intrinsèque de la particule : elle est indépendante
du temps et du référentiel.

B

E B

E

E

B
BE

F
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10. La force de Lorentz

1.1.2. Comparaison avec la force gravitationnelle

La comparaison des forces électrostatique et gravitationnelle a été mentionnée dans
le chapitre 2, Application 1 : le rapport colossal obtenu justifie que nous négligions
par la suite les forces de gravitation (et donc de pesanteur).

1.1.3. Puissance

La puissance de la force de Lorentz est : �Lo = FNLo . vn = q EN. vn .

Elle est nulle si le champ électrique est nul.

1.2. Hypothèses d’étude

Considérons le mouvement de particules dans des champs EN et (ou) BN indépen-
dants du temps (ou très exceptionnellement à variation temporelle suffisamment
lente pour que l'approximation du régime quasi permanent soit applicable (cf. cha-
pitre 7 § 1.2.).

Nous utiliserons une propriété des champs électriques indépendants du temps, à
savoir l'existence d'un potentiel scalaire V(M) tel que :

EN = – gradO V .

Remarque

La plupart des expériences et des exercices étudiés ci-dessous supposent la réali-
sation d’un vide poussé (pression inférieure à un pascal), ce qui élimine tout frot-
tement lors du déplacement des particules.

La relation fondamentale de la mécanique appliquée à une particule de masse m
et de charge q s’écrit alors :

m = q (EN + vn ∧ BN) .

La masse m et la charge q interviennent par leur rapport . Il est donc inutile
de chercher à déterminer séparément q et m par l’étude du mouvement.

Mouvement d’une par t icule chargée2 dans les champs EN et (ou) BN

2.1. Champ EN seul

2.1.1. Rôle accélérateur d’un champ électrique

Lorsqu’une charge q se déplace dans un champ électrostatique EN = – gradO V ,
elle subit la force : FN = q EN = – gradO (qV) , qui dérive de l’énergie potentielle
�P = qV .

L’énergie mécanique �M = m v2 + qV se conserve et en deux positions M1 et

M2 de la particule, il vient :

v2( M2) = v2( M1) + 2 (V1 – V2) .

En supposant que la particule parte d’un point O de potentiel nul (potentiel de
référence) avec une vitesse nulle, son énergie cinétique en un point M est :

�K (M) = – qV (M) .

Cette particule possède une énergie cinétique exprimable naturellement en élec-
tron-volt (symbole : eV).

Remarquons que pour un électron (q = – e) , il faut que V (M) > 0 pour qu’il puisse
acquérir une vitesse.



2.1.2. Mouvement dans un champ électrique Enn uniforme
et indépendant du temps

Une particule passant à l’intérieur d’un condensateur plan subit une déviation pro-
portionnelle à la différence de potentiel entre les plaques du condensateur
(cf. l’Application 3) ; ce principe est utilisé dans un oscilloscope analogique.

■ Principe de fonctionnement d’un oscilloscope analogique

Limitons-nous à rappeler succinctement la description du tube cathodique d’un
oscilloscope.
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10. La force de Lorentz

Énergie et vitesse d’un électron

Application 2
Sachant que 1 eV = 1,6 . 10 – 19 J , calculer l’éner-
gie (en eV ) et la vitesse d’un électron accéléré par
une différence de potentiel :

V = 10 kV .

L’énergie cinétique est �K = + e V = 10 keV
(q = – e = – 1,6 . 10 – 19 C et 1 J = 1 C . 1 V).

La vitesse avec m = 9,1 . 10 – 31 kg

est : v = 1,88 . 105 m . s – 1 .

Remarque
L’énergie de masse (théorie relativiste) de l’élec-
tron est donnée par � = m c 2 , soit :

� = 511 keV environ.

2e

m
v = V ,

m c 2

10

Tant que le potentiel accélérateur est nettement infé-
rieur à 500 kV, la théorie classique est utilisable
pour le calcul de la vitesse.

Pour V = 50 kV (énergie eV = ), les calculs

classiques et relativistes donnent respectivement :
v classique = 1,33 . 108 m . s – 1

et v relativiste = 1,24 . 108 m . s – 1

(erreur relative de 7 %).
Nous conviendrons que c’est la limite supérieure à
ne pas dépasser.

Des considérations semblables peuvent être faites
pour le proton, mais son énergie de masse étant de
l’ordre du GeV (1000 MeV), le traitement classi-
que est permis avec des tensions beaucoup plus
importantes (en valeur absolue).

photons

écran

canon à électrons

e–

3 4 5

5 6

61 2

� Doc. 1. Oscilloscope : ➀ : Fil
chauffé. ➁ : Wehnelt. ➂ : Électrode de
concentration ou de focalisation. ➃ :
Électrode d’accélération. ➄ : Plaques
de déviation verticale. ➅ : Plaques de
déviation horizontale.
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Dans le tube règne un vide poussé (p < 10–4 Pa). Le pinceau électronique est pro-
duit par un canon à électron comportant un fil chauffé (1 000 K environ) à fort pou-
voir émissif en électrons, une électrode appelée wehnelt permettant de régler l’in-
tensité du courant électronique, et des électrodes de concentration et d’accélération
(lentilles électroniques).

Les électrons traversent ensuite les plaques de déviations verticales et horizontales.
Quand les électrons traversent les plaques horizontales soumises à une différence
de potentiel UV , ils sont déviés verticalement ; cette déviation était proportion-
nelle à UV (cf. l’Application ci-dessous).

Déflexion électrostatique
dans un condensateur plan

Application 3
Soit une particule de masse m et de charge q
traversant l’espace entre les deux armatures d’un
condensateur plan ; la particule préalablement
accélérée pénètre en O avec une vitesse initiale

0 = v 0 x .ev

Doc. 2. Déflexion électrostatique.

y

I

d

Q

P

– e

x

D
LA

B

v 0

θ

portion de parabole

continuité de vitesse

E

O

Il existe une différence de potentiel U = VB – VA > 0
entre les armatures métalliques de longueur L et dis-
tantes de d . Nous supposerons que le champ élec-

trostatique est uniforme et égal à

dans l’espace entre les armatures, et nul ailleurs.

Déterminer la trajectoire d’un électron et le point
d’impact I sur un écran fluorescent placé à l’abs-

cisse dans l’hypothèse où la particule ne

rencontre pas l’une des armatures du condensateur.

La relation fondamentale de la dynamique (mécani-

que classique)

U

d
= – yeE

L

2
x = D + ,

d

d t
m = q donne :E

v

d

(origine des temps prise au passage en O).

dv x

d t
= 0 , donc v x = v 0 et x = v 0 t

(tant que x < L). Dans l’espace,

entre les armatures, la trajectoire est un morceau de

parabole d’équation

En x = L (point P), la particule sort du champ

et sa trajectoire devient rectiligne. La continuité
du vecteur vitesse en P :

permet d'obtenir la pente de la trajectoire :

dv y

d t
= E

q

m
=

e U

m d
, soit v y =

e U

m d
t ,

puis y =
e U

m d
t 21

2

y = e U

m dv
x 2 .

1

2 2
0

E

v x P = = v 0 et v y P = =
dx

d t P

dy

d t P

L

d

e U

m v 0

tan q = =
dy

dx P

L

d

e U

m v
.

2
0

L’équation de la droite est donnée par :

Le point I d’impact sur l’écran fluorescent a donc

pour ordonnée remarquons que

Cette déflexion dépend de U (tension appliquée
entre les plaques de déviation) et de l’énergie ciné-

tique mv de la particule incidente : des parti-

cules de même charge et d’énergie cinétique initiale
identique subiront la même déviation.

y I =
L

d

e U

m v
D

2
0

y =

=

L

d

e U

m v
x –

2
0

L

2

1
2

2
0

L / 2

D
y P

y I .

L

2
PI passe par Q , 0 .
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10. La force de Lorentz

Il en est de même pour la traversée des plaques verticales, la déviation horizon-
tale associée étant proportionnelle à la tension UH appliquée entre ces plaques.

Sur l’écran la trace de l’électron (spot) traduit ces déviations :

X = K1 UH et Y = K2 UV .

Nous nous reporterons aux travaux pratiques pour l’utilisation de cette propriété.

� Pour s’entraîner : ex. 1.

Un électron mobile dans un champ magnétique indépendant du temps (station-
naire) est uniquement soumis à la force magnétique = q ∧ (souvent
appelée également force de Lorentz).

La puissance de cette force est nulle, car :

. = (q ∧ ) . = 0 ,
(produit mixte avec deux vecteurs colinéaires).

F
B

v B

F v v B v

2.2. Champ B seul

2.2.1.Propriétés du mouvement dans un champ B stationnaire

Le travail de la force magnétique = q ∧∧ qui s’exerce sur une parti-
cule est nul.
L’énergie cinétique de cette particule est constante (théorème de la
puissance cinétique). La norme de sa vitesse au cours du mouvement est
constante :

d K

d t
= . = 0 , donc K = cte et v = cte .vF

vF B

Remarques

• Si dépend du temps selon = (M , t) , la force magnétique ne travaille
toujours pas, mais il apparaît (phénomène d’induction) un champ électrique
dont la puissance est en général non nulle. Une telle situation est exclue de nos
hypothèses d’étude.

• La puissance de la force magnétique est nulle mais ses effets ne le sont pas ; la
force magnétique dévie les particules chargées en mouvement et cela d'autant
fortement que leur vitesse est élevée.

B B B

2.2.2.1.Cas général d’une vitesse initiale quelconque

Étudions le mouvement d’une particule (q , m) placée à l’origine O du trièdre
trirectangulaire (O ; x , y , z) à l’instant initial t = 0 (vitesse initiale 0) dans

un champ magnétostatique = B z (B > 0) uniforme dans un domaine donné.

Posons 0 = v 0 (sin a . x + cos a . z) .

La relation fondamentale de la dynamique appliquée au point matériel donne :

Posons q = e e (e = + 1 pour un proton, et e = – 1 pour un électron).

Introduisons la grandeur c homogène à l’inverse d’un temps et que nous

appellerons pulsation cyclotron.

eB

v

v e e

d

d t
m = q ∧ B z .e

v v

e B

m
w =

2.2.2.Mouvement dans un champ B uniforme et indépendant
du temps

Doc. 3. Mouvement d’une particule
dans un champ magnétique.

z

(q, m)

x

yO

α

v 0

B = Bez
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10. La force de Lorentz
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Nous obtenons :
dv x

d t
= e wc v y ,

dv y

d t
= – e wc v x et

dv z

d t
= 0 .

■ Mouvement projeté sur le plan (xOy)
En intégrant les deux premières équations par rapport au temps, nous obtenons :

v x = e wc y + v 0 sin a et v y = – e wc x .

Il est possible de reporter v x et v y dans les équations précédentes et d’intégrer
à nouveau, mais il est aussi efficace d’introduire la variable x = x + i y qui repré-

sente l’affixe de la projection orthogonale du vecteur (vecteur position de
la particule) dans le plan (xOy) .

Comme nous avons dont la solution

est :

À t = 0 , x = 0 , donc

OM

dx
d t

= v x + i v y ,
dx
d t

= – e i w c x + v 0 sin a ,

e v 0

wc
x = – i sin a + A exp ( – i e w c t) .

e v 0

wc
A = i sin a et

e v 0

wc
x = i sin a [exp ( – i e wc t) – 1] .

■ Mouvement suivant (Oz)
La troisième équation fournit :

v z = cte = v 0 cos a , soit z = v 0 cos a t

(mouvement uniforme parallèlement à (Oz)). La particule décrit donc une hélice
circulaire.

e v 0

wc
x 2 + sin a + y = v 0

wc
sin a :

2 2

v 0

wc
r = sin a .

e v 0

wc
yC = – sin a

x et y vérifient le mouvement projeté

dans le plan (xOy) est un cercle de centre C (xC = 0 et ) et

de rayon Ce cercle est décrit avec la vitesse angulaire – ewc égale

en valeur absolue à la pulsation cyclotron.

e v 0

wc
x (t) = – sin a sin (– e wc t)

e v 0

wc
y (t) = – sin a [1 – cos (– e wc t)] .

Les lois horaires sont donc :

a)

v 0 sinα

y

z
x

0

B

b)

pas
de l’hélice

B

z

x
v 0

Doc. 4. Projection de la trajectoire sur les plans de coordonnées dans le cas
d’un proton.

c)

pas
de l’hélice

B

z

yv 0 sinα



2.2.2.2. Le cas particulier d’une vitesse initiale normale
au champ magnétique

Si la vitesse initiale vn0 de la particule est normale au champ magnétique

BN, , cette particule décrit une trajectoire circulaire dans un plan ortho-

gonal à BN, et contenant vn0 .
� Pour s’entraîner : ex. 2, 3 et 4.
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10. La force de Lorentz

a)

x

z

y

B

x

y
z

B

v 0 sinα

q = – e

Doc. 5. Trajectoire d’un électron et d’un proton dans un champ uniforme.B

x

y
z

B

v 0 sinα

q = e

b) z

x

y

v 0 cosα

v 0 sinα

B

Remarque

Le pas de l’hélice est h = v 0 cos a T , où
2π
wc

T = = 2π
m

e B
, donc :

m v 0

e B
h = 2π cos a .

Une mesure précise de la charge spécifique

Application 4
Le document 6 schématise une méthode expérimen-
tale très précise de mesure de la charge spécifique

de l’électron. Les électrons traversent un premier

diaphragme circulaire D1 avec une vitesse initiale

0 (tension V d’accélération) faisant un angle a
faible, mais variable avec l’axe (Ox) (grâce à un
condensateur soumis à une tension variable sur le
trajet des électrons incidents).
Après D1 les électrons pénètrent dans un solénoïde
S où règne un champ magnétostatique longitudinal

uniforme = B x .

e
m

v

eB

e
m

Doc. 6. Une mesure de .

x

u ~

V

B

v 0

α
D1

L

D2

portion d’hélice
régulière

À une distance L de D1 est placé un deuxième
diaphragme identique D2 .
À quelle condition les électrons du faisceau pour-
ront-ils franchir D2 ?

En déduire une mesure possible de .

La trajectoire des électrons entre D1 et D2 est un
morceau d’hélice, et les conditions optimales pour
franchir D2 sont obtenues lorsque L est un nom-
bre entier de fois le pas de l’hélice.

Sachant que cos a ª 1 à l'ordre un en a et que

, nous en déduisons :

Les grandeurs n , L , B et V étant accessibles à la

mesure, le rapport est déduit :

2π m v 0 cos a
e B

Soit L = n , où n est un entier.

m v = e V
1

2
2
0

8π2 V

n 2 L2 B 2
= .

e

m

= (1,758 6 + 0,002 3) . 1011 C . kg – 1 .
e

m

e
m

e

m
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10. La force de Lorentz

EN et BN croisé avec une vitesse
initiale nulle – Vitesse de dérive

Une particule (q = + e , m) se trouve à l’instant initial
à l’origine O du repère trirectangulaire (O ; exn , eny , enz)
lié au référentiel � galiléen, avec sa vitesse vn(0) nulle.
Étudier son mouvement ultérieur en présence des champs
uniformes et constants EN = E eny et BN = B enz .

On posera wc = , vD = et R0 = .

La relation fondamentale de la dynamique appliquée à
la particule s’écrit :

m = e EN + e vn ∧ BN, soit = wcvD eny – wc enz ∧ vn.

La trajectoire est dans le plan (xOy) puisque = 0

donne par intégration z = 0 , compte tenu des condi-
tions initiales.

, soit ;

, soit ;

ce qui donne :

= – w2y + wvD = – w2(y – R0) ,

soit y = R0 (1 – cos w t) et x = R0 (w t – sin w t) .
La courbe trajectoire est une cycloïde représentée sur le
document 8.
La vitesse de dérive de la particule est, par définition :

< vn > = < > enx + < > eny = R0w enx = vD enx = vDn .

Observons que la particule décrit une trajectoire circu-
laire de centre G et de rayon R0 dans le référentiel �’

en translation uniforme à la vitesse vnD = par
rapport à � .
Dans �’ le champ électrique E’N est nul (formules de
changement de référentiel pour EN et BN vues en
§ 1.1.1) : nous sommes donc ramenés au cas du mou-
vement dans un champ magnétique uniforme : B’N = BN.

Application 5

0,30 0,6 0,9 1,2 1,5 1,8

0,2

0,4

y

x

B E

Doc. 8. Mouvement d’un proton dans EN et BN croisés ;
vn0 = 0 .

2.3. Actions simultanées des champs EN et BN
Qualitativement, nous pouvons prévoir pour des champs uniformes Ek et Bk appli-
qués les propriétés suivantes.

2.3.1. Cas de champs parallèles

Si Ek et Bk sont parallèles, le projeté de la trajectoire sur un plan orthogonal aux
champs est toujours un cercle. En revanche, la composante de la vitesse parallèle
aux champs est accélérée. La vitesse n’est pas constante et la trajectoire n’est pas
une hélice de pas constant.

2.3.2. Cas de champs En et Bn croisés

Si Ek et Bk sont croisés, le champ magnétique a pour effet d’incurver la trajectoire.
Les exemples suivants montre qu’il en résulte une dérive, c’est-à-dire un mouve-
ment « moyen » dont la vitesse est normale à Ek et à Bk .

2.3.2.1. Cas d’une vitesse initiale nulle

Doc. 7. Champs EN et BN croisés.

E

B 0

M

y

z

x

G

2R0

R0

vD

v 0 = q > 0



2.3.2.2. Vitesse initiale quelconque

Une étude complète montre la généralité de cette vitesse de dérive .

En posant vn’ = vn – vnD , nous obtenons l’équation d’évolution : m = qv’m ∧ Bn .

La trajectoire est circulaire dans le repère (�’) en translation à la vitesse vnD dans
(�) contenant les champs En et Bn .

� Pour s’entraîner : ex. 7.

2.3.2.3. Mesure de avec EN et BN croisés

Appl icat ions diverses3
3.1. Notions sur les spectrographes de masse
Les propriétés des mouvements des particules (après ionisation) dans des champs En

et Bn sont utilisées pour mettre en évidence la présence d’isotopes dans un échantillon.
Étudions le principe d’un spectrographe destiné à trier les isotopes selon leur masse.
L’exercice 6 propose un autre principe de spectrographe de masse utilisant la méthode
des paraboles.
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10. La force de Lorentz

Une particule placée dans des champs Enn et Bnn croisés, uniformes, et indé-
pendants du temps, subit une vitesse de dérive :

.

La mesure de avec des champs

EN et BN croisés

Un faisceau monocinétique d’électrons traverse sans
déviation une région � de largeur a , où règnent des
champs magnétique et électrique uniformes, constants
et orthogonaux : EN = EN eyN et BN = BN ezN .

Le point d’impact sur un écran placé à la distance b
du centre Q de la région est alors I0 .

Si on supprime le champ BN , nous observons que le
point d’impact se déplace en I , de cote yI , sur l’écran.
Montrer que la connaissance de EN , BN , a , b et yI
permet la mesure de .

La première situation correspond à l’égalité rigoureuse
des forces électrique et magnétique qui annulent leurs
effets ; la vitesse vaut :

v0 = vD = .

La seconde situation correspond à la déflexion dans un
champ électrique uniforme :

yI = – b .

L’élimination de v0 entre les relations donne :

= – yI .

La méthode suppose EN et BN connus (uniformes) et
le domaine � bien délimité, ce qui pose quelques pro-
blèmes expérimentaux.

Application 6

y

x

��

a

b

v 0
I0Q

B

E

Doc. 9. Mesure de avec des champs croisés.



3.1.3. Le spectrographe de Bainbridge

3.2. Un accélérateur de particule : le cyclotron

Le premier cyclotron, réalisé par Lawrence, accélérait des électrons. Actuellement,
les cyclotrons sont utilisés essentiellement pour l’accélération d’ions.

Nous nous limiterons à une description élémentaire de l’appareil (doc. 11) ; l’étude
exhaustive des accélérateurs sortant du cadre de cet ouvrage.

3.2.1. Description

Un cyclotron accélérant des ions (des protons par exemple) comprend essentielle-
ment un cylindre d’axe (Oz) placé dans l’entrefer d’un électro-aimant, où règne un
vide poussé. Un champ magnétique Bn = B ezm uniforme est appliqué sur tout le
domaine du cylindre de rayon R . Les parois de ce cylindre sont matérialisées par
deux électrodes conductrices creuses, appelées dees, séparées par une région de
faible épaisseur d , s’étendant de part et d’autre d’un plan contenant l’axe du cylindre.

Une source (non décrite ici) permet d’injecter les ions au centre avec une énergie
cinétique négligeable.

Un générateur applique entre les électrodes métalliques (dees) une tension sinu-
soïdale de fréquence v , créant ainsi entre les dees un champ électrique uniforme
En variant sinusoïdalement à la fréquence v :

E = Em cos(2πvt) = cos (2πv t) .

À l’intérieur de chaque dee, le champ électrique est considéré comme nul.

Admettons que les ions sont accélérés une première fois par un champ électrique
Em sur la distance d avant de pénétrer dans le premier dee.
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Le spectrographe de Bainbridge
Dans un tel spectrographe les ions (supposés ici posi-
tifs) sortant d’un ioniseur où ils ont été préalablement
accélérés sous une tension de valeur absolue U , tra-
versent d’abord un filtre de vitesse, pénètrent ensuite
dans un champ magnétique transversal uniforme
Bn = B ezm , puis décrivent un demi-cercle et viennent
impressionner la plaque photographique. La fente F
étant supposée très fine, déterminer la distance sépa-
rant les traces rectilignes associées à deux isotopes.

Calculer la distance séparant les isotopes 39K+ et
41K+ sur la plaque.

Données : B = 0,1 T et U = 10 kV.

Les ions décrivent un demi-cercle de diamètre :

FM = 2r = , avec q = e .

Comme 1/2 m v2
0 = eU, il vient, en posant m = A mp

où mp = 1,672 . 10–27 kg est la masse du proton :

FM = L (A) = .

A.N. : L(39) = 1,806… m et L(41) = 1,852… m ;

le nombre de chiffres significatifs ne peut pas être pré-
cisé ici, mais la séparation des isotopes est nette.

Application 7

x
M

F

B

détecteur

deux isotopes

ez

v0

filtre de vitesse

ioniseur

a) z

O
dee dee

b)

O

u

Doc. 10. Le spectrographe de Bainbridge.

Doc. 11. Le cyclotron.
a) vue latérale ;
b) les dees vus du dessus. ©
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3.2.2. Fonctionnement optimal

Quand un ion pénètre dans l’un des dees avec la vitesse vl (supposé normale à (Oz)
et aux faces des dees), il y décrit une trajectoire circulaire (donc un demi-cercle)
de rayon r = , avant de retraverser l’espace entre les armatures, de largeur d.

La durée du séjour dans le dee, indépendante de la vitesse de la particule, est

∆ t = en posant wc = (pulsation cyclotron des ions considérés). Si

cette durée est égale à la demi-période de variation du champ électrique (soit wc = 2πn
ou n = ), alors le champ E = – Em accélère à nouveau les ions à la sortie du

dee.

Ainsi, à chaque demi-tour, le champ électrique fournit le travail optimal :
W = q Em d = q U ,

servant à accroître l’énergie cinétique de l’ion.
Après n traversées dans ces conditions, l’énergie cinétique de l’ion vaut :

�K = mv2
n = n q U et rn = .

Les rayons rn augmentent donc proportionnellement à . Le nombre de demi-
tours est limité par le rayon maximal des électrodes. Lorsque rn = R , un déflecteur
dévie les ions accélérés pour les utiliser dans une chambre d’étude (chocs, etc.).

� Pour s’entraîner : ex. 8.

Les électrons de conduction d’un métal4
4.1. Modèle du mouvement d’ensemble
Un courant électrique est créé par un déplacement d’ensemble de charges dans un
référentiel � donné. Nous nous limitons au cas du déplacement d’ensemble des
électrons libres dans des métaux immobiles dans �, réalisant ainsi un courant appelé
courant de conduction.

4.1.1. Les électrons de conduction
Dans un modèle classique, les charges mobiles (ou porteurs) dans les métaux sont
les électrons libres, encore appelés électrons de conduction (par opposition aux
électrons de valence liés aux ions du réseau et non susceptibles de se déplacer dans
tout le conducteur). Les électrons de conduction (en nombre par unité de volume
très élevé), peuvent être assimilés à un gaz dans tout le conducteur. De façon plus
générale, nous appellerons porteur toute charge susceptible de se déplacer dans un
milieu conducteur.
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10. La force de Lorentz

Nombre d’électrons de conduction
par unité de volume

Dans le cas du cuivre, chaque atome de cuivre fournit
un électron de conduction. Calculer le nombre nv
d’électrons de conduction par unité de volume.

Données : Masse volumique du cuivre r = 8 900 kg . m–3 ;
masse atomique du cuivre M = 63,6 g et nombre
d’Avogadro NA = 6,02 . 1023 .

Le nombre n d’électrons de conduction par unité de
volume est donné par :

n = NA

soit :

n = 6,02 . 1023 = 8,4 . 1028 m–3 ≈ 1029 m–3.

Application 8



En l’absence de force appliquée, on admet que les vitesses uil des différents élec-
trons de conduction se distribuent de manière aléatoire de sorte que la valeur

moyenne définie par vl = < uli > = est nulle, où δN représente le nombre

d’électrons de conduction contenus dans un élément de volume δt .

Donc, en l’absence de champ électrique En appliqué (c’est-à-dire quand le conduc-
teur est équipotentiel) il n’existe aucun courant. En revanche, quand un champ élec-
trique est appliqué, la vitesse moyenne des porteurs, que nous appellerons vitesse
d’ensemble ou vitesse de dérive, n’est plus nulle.

4.1.2. Vitesse d’ensemble (ou de dérive) en présence d’une force
Fk appliquée aux porteurs

Nous considérons un conducteur dans lequel chaque porteur est soumis à une force
Fk (ayant pour origine, par exemple, un champ électrique). Pour simplifier, nous
supposons que tous les porteurs d’un volume mésoscopique sont soumis à la même
force Fk . Appliquons le principe fondamental de la dynamique au système consti-
tué des porteurs d’un élément de volume mésoscopique δt , dont le barycentre
se déplace à la vitesse d’ensemble vl . Le nombre de porteurs de ce système est
δN = n δt (n représente donc le nombre de porteurs par unité de volume) et sa
masse est égale à n m δt . Nous obtenons donc :

n mδt = n δt Fk + δ fk

où δ fk désigne une force due aux interactions entre les porteurs mobiles de ce sys-
tème et le réseau immobile dans lequel ils se déplacent. Cette force s’oppose au
mouvement, et nous faisons l’hypothèse qu’elle est de la forme : δ fk = – k vl δt
analogue à une force de frottement visqueux pour modéliser les collisions. Nous
en déduisons une équation différentielle vérifiée par vl (t) :

n m = n Fk – k vl ,

que l’on peut écrire : m = Fk – , avec t = .

t (homogène à un temps) est une grandeur caractéristique du phénomène étudié :
c’est le temps de relaxation de conduction.

Pour interpréter simplement ce temps t , supposons que nous appliquions une
force Fk uniforme et constante à compter de la date initiale t = 0 . Supposons, en
outre, qu’à cette date vl = 0 , la solution de l’équation précédente serait :

vl = ;

t traduit donc un ordre de grandeur du temps d’instauration d’un régime perma-

nent donnant une vitesse d’ensemble vl = proportionnelle à Fk .

4.1.3. Le modèle des collisions

Seule la mécanique quantique permet de décrire de façon réellement satisfaisante
le comportement des électrons de conduction dans un métal. Nous pouvons cepen-
dant justifier l’existence de la force de « frottement » en – k vl à partir d’un modèle
simplifié où les porteurs sont assimilés à des particules libres qui subissent des col-
lisions.

4.1.3.1. Les hypothèses du modèle

• Les porteurs ont un mouvement désordonné (agitation thermique) et subissent
des collisions sur des sites (immobiles) du réseau dans lequel ils se déplacent.
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10. La force de Lorentz



• Entre deux collisions, un porteur n’est soumis qu’à la force Fk que nous suppo-
sons ici constante et uniforme. Si la force Fk est due à un champ électrique appli-
qué, cette hypothèse revient à admettre que nous pouvons remplacer Ek par sa
valeur moyenne (nivelée).
• La valeur moyenne de la vitesse des porteurs juste après une collision est nulle.
Cela revient à considérer que, en moyenne, les vitesses après un choc ont une répar-
tition isotrope.

4.1.3.2. Vitesse moyenne des porteurs

Étudions le mouvement d’un porteur de masse m à partir d’une collision qui a lieu
à la date t = t0 . Il a une vitesse initiale vl 0 dont, par hypothèse, la valeur moyenne
(prise sur un grand nombre de collisions) est nulle.
D’après la relation fondamentale de la dynamique : m = Fk .

Intégrons cette équation différentielle vectorielle :

m [vk(t) – vk0] = – e Ek(t – t0) soit : vk (t) = vk0 + (t – t0) .

Calculons la valeur moyenne < vk > de vk (t) pour les porteurs d’un volume méso-
scopique.

< vk > = < vk0 > + < t – t0 > .

• Par hypothèse < vk0 > = 0k .

• < t – t0 > représente la durée moyenne écoulée depuis le dernier choc. C’est une
quantité constante dans le temps que nous notons t . Un modèle statistique simple
pourait montrer que t représente aussi la durée moyenne entre deux collisions.

Finalement, nous obtenons avec ce modèle : < vk > = .

Le « gaz de porteurs » a donc, en moyenne, une vitesse de dérive < vk > qui se
superpose à la vitesse d’agitation thermique aléatoire et de valeur moyenne nulle.

4.2. Vecteur densité de courants de conduction

Rappelons la définition du vecteur densité de courant jl (cf. chapitre 6) :

On peut vérifier que I (t) est bien la charge traversant S par unité de temps.
En multipliant par nq les deux membres de l’équation différentielle en vk établie
au § 4.1.2. nous obtenons l’équation différentielle vérifiée par jl en présence d’une

force appliquée Fk : t + jl = Fk (équation de transport).

4.3. Comportement d’ensemble en présence
d’un champ électrique seul

4.3.1. La loi d’Ohm locale

Dans ce qui suit, nous expliciterons les propriétés de notre modèle dans l’hypo-
thèse d’un milieu homogène (n est supposé uniforme), en présence d’un champ
électrique Ek supposé localement uniforme et constant (donc Fk = q Ek), appliqué
à compter de la date t = 0 , pour laquelle on avait vk = 0l et donc jl = 0l .
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10. La force de Lorentz

nV0

nV(t)

nE

Doc. 12. Trajectoire d’un électron entre
deux collisions en présence d’un champ
électrique.

nj

xx1x2

U

I

�

Doc. 13. Conducteur cylindrique.

La vitesse instantanée, due à l’agi-
tation thermique, est beaucoup plus
grande que la vitesse de dérive (ou
vitesse moyenne).

Si nous adoptons le modèle des gaz
monoatomiques, nous trouvons une
vitesse d’agitation de l’ordre de :

u = ≈ 105 m . s–1.

La vitesse de dérive est classique-
ment de l’ordre de 10–3 m . s–1.

• À un mouvement de porteurs de vitesse moyenne vkk non nulle on associe
un vecteur densité de courant jll = n q vkk où n représente le nombre de por-
teurs par unité de volume et q la charge de chacun de ces porteurs.

• L’intensité IS(t) qui traverse la surface S à la date t est donnée par le
flux du vecteur densité de courant à travers S (doc. 13) :

IS(t) = jll (t) . dSkk .



Pour t > 0 , une intégration immédiate de l’équation d’évolution de vk et de l’équa-
tion de transport, donne :

vk = Ek et donc jl = Ek .

Le temps de relaxation de conduction t est en général très faible (t de l’ordre de
10–14 s). Cela signifie que pour t supérieur à t , donc en pratique pour t > 0 ,
l’état (cf. l’Application 10) permanent est atteint. D’où la loi d’Ohm locale :

vk = Ek et jl = Ek .

Ces relations sont en fait valables en régime quasi stationnaire, pour lequel les varia-
tions temporelles éventuelles de Ek sont lentes (durées typiques de variation net-
tement plus élevées que t).

4.3.2. Résistance d’un conducteur filiforme cylindrique
Considérons un conducteur filiforme cylindrique, homogène, de section s , de lon-
gueur 	 et de conductivité g (doc. 13). Un courant continu d’intensité I traverse
ce conducteur dans le sens de l’axe (Ox) quand une d.d.p. continue U (U > 0) est
appliquée entre ses extrémités.

Le déplacement des porteurs est « canalisé » par les parois du conducteur. Il s’en
suit que le vecteur densité de courant jl est en tout point parallèle à (Ox).

Ek = jl est un champ électrique dont les lignes de champ sont toutes parallèles

à (Ox) dans une région globalement neutre. On en déduit (cf. Application 9) que
Ek et jl sont uniformes dans le cylindre : Ek = E exN et jl = j exN = g E exN .

En régime permanent, l’intensité I a la même valeur à travers toutes les sections
du conducteur :

I = jl . dSk = g E s .

Exprimons I à l’aide du potentiel V(x) associé au champ Ek :

I = – g s .

I étant indépendant de x , cette équation différentielle s’intègre simplement :

d’où : U = V1 – V2 = .

Nous en déduisons la valeur de la résistance du conducteur :

R = .

La vitesse d’ensemble (ou de dérive) des particules (q, m) participant à la
conduction est donnée par vkk = m Ekk ; m désigne la mobilité de ces particules
(m = q ). Pour les électrons, m = – e est négatif.

Loi d’Ohm locale :
Le vecteur densité volumique de courants jll (s’exprimant en A . m–2) est
proportionnel au champ électrique appliqué au conducteur :

jll = g Ekk ,

g désigne la conductivité électrique du milieu (dit ohmique), dont l’expres-
sion est donnée par g = n q2 (t voisin de 10–14 s).

L’inverse de la conductivité r = est la résistivité. La conductivité s’éva-

lue en S.m–1 et la résistivité en W . m.
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10. La force de Lorentz

Un conducteur est un milieu globa-
lement neutre à l’échelle mésosco-
pique.

Pour un conducteur métallique, la
charge des électrons de conduction
est exactement compensée par la
charge opposée des ions positifs
immobiles.

Pour une solution électrolytique,
chaque élément mésoscopique
contient des ions positifs et négatifs
dont les charges s’équilibrent.
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10. La force de Lorentz

Champ parallèle

Soit un champ électrostatique de la forme :
Ek = E (x, y, z) exN .

1) Montrer que Ek ne peut dépendre que de la
variable x .
2) Montrer que si le milieu est globalement neutre,
Ek est uniforme.

1) Les lignes de champ de Ek sont des droites paral-
lèles ; les équipotentielles sont les surfaces ortho-
gonales à ces droites ; le potentiel ne dépend donc
que de x .

On en déduit :
Ek = – exN soit : Ek = E (x) exN .

2) Dans une région neutre le flux de Ek a la même
valeur à travers toute section d’un tube de champ.
Or, les tubes de champ sont des cylindres de section
droite constante S .
On en déduit : E (x1)S = E (x2)S
et donc : E indépendant de x .

Conclusion : le champ Ekk est uniforme.

Application 9

Les ordres de grandeur de la conduction
électrique dans le cuivre

Dans le cas du cuivre, en admettant que chaque atome
fournit un électron de conduction en moyenne, la
conductivité électrique obtenue par mesure de la
résistance d’un tronçon cylindrique de longueur 	
et de section s (R = ) est g = 6 . 107 S–1. m–1 .

On suppose qu’un courant d’intensité 1 A circule
dans un fil cylindrique de section s = 1 mm2 .

Déterminer :

a) la norme du vecteur densité de courants, supposé
uniforme et celle du champ électrique ;

b) le temps de relaxation de conduction t dans le
cadre de notre modèle ;

c) la vitesse d’ensemble v (ou de dérive) et la mobi-
lité des électrons de conduction ;

d) la norme u de la vitesse moyenne d’un électron
entre deux chocs, sachant que le libre parcours
moyen (distance moyenne parcourue entre ces deux
chocs) est l = 45 nm .
Commenter ces valeurs.

Données :
Masse volumique du cuivre r = 8,9 . 103 kg . m–3,
masse atomique du cuivre M = 63,6 g , nombre

d’Avogadro NA = 6 . 1023 , masse d’un électron m
= 9 . 10–31 kg .
a) j étant uniforme I = js , donc :

j = = 106 A . m–2

et :
E = = 1,67 . 10–2 V . m–1 .

b) g = n e2 donne t = ;

n = r = 8,4 . 1028 m–3 , donc t = 2,5 . 10–14 s.

c) jl = – n e vk fournit :

v = = 7,4 . 10–5 m . s–1 = 0,074 mm . s–1

(vitesse très faible qui correspond à un mouvement
d’ensemble de 4,4 mm par minute). La mobilité est :

m = – e = – 4,4 . 10–3 C . s . kg–1 .

Nous vérifions que vk = m Ek .
d) Avec l = u t , nous obtenons :

u = = 1,8 . 106 m . s–1

(valeur nettement supérieure à v). D’autre part, nous
remarquons que l est nettement supérieure à la
dimension de la maille du cristal, typiquement de
l’ordre de quelques dixièmes de nanomètres.

Application 10



4.4. Présences simultanées d’un champ électrique
et d’un champ magnétique

4.4.1. L’équation de transport et la constante de Hall
En présence simultanée d’un champ électrique Ek et d’un champ magnétique Bk,
la force Fk responsable du mouvement d’ensemble des porteurs est :

Fk = q ( Ek + vk ∧ Bk) .

L’équation de transport s’écrit alors :

t + jl = g (Ek + vk ∧ Bk) ;

soit encore :

t + jl = g ,

où RH = est la constante de Hall.

En régime stationnaire ou quasi stationnaire, c’est-à-dire lorsque le terme t
est nul ou négligeable), le vecteur densité de courant s’établit à :

jl = g (Ek + RH jl ∧ Bk) .

Ces équations permettent d’interpréter l’effet Hall que nous allons décrire mainte-
nant.

4.4.2. Cas d’une géométrie filiforme et rectangulaire

4.4.2.1. Le champ de Hall

Considérons un ruban conducteur de longueur a selon (Ox), de largeur b selon
(Oy ), d’épaisseur c selon (Oz ), placé dans un champ magnétique uniforme
Bk = B ezN (B > 0). Une tension continue U , appliquée entre les faces du conduc-
teur orthogonales à (Ox), fait circuler un courant continu d’intensité I et de den-

sité de courant uniforme jl = exN .

La généralisation de la loi d’Ohm locale, lorsque le conducteur est placé en
présence simultanée d’un champ électrique Ekk et d’un champ magnétique

Bkk , s’écrit :
jll = g (Ekk + RH jll Ÿ Bkk ) ,

où la constante de Hall RH est égale à .
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b Doc. 14. Effet Hall en géométrie
parallélépipédique (géométrie de Hall).
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L’expérience montre, qu’en régime établi, il apparaît une tension UH , dite ten-
sion de Hall, entre les faces du conducteur orthogonales à (Oy). Quantitativement,
cette tension de Hall UH est proportionnelle au courant I et à la norme du champ
magnétique Bk .

4.4.2.2. Interprétation physique

Il est aisé de comprendre l’origine de la tension de Hall en examinant le régime
transitoire qui précède le régime établi décrit ci-dessus.

■ Régime transitoire

Pendant le régime transitoire, tout électron de conduction (q = – e) subit :

a) une force électrique qE0M = – e exN qui tend à le déplacer dans le sens des x

décroissants ;
b) une force magnétique q vk ∧ Bk = – e(– v exN) ∧ (B ezN) = – e vB eyN qui tend à le
déplacer vers la face ①.

Ainsi, sous l’effet de la force magnétique, les électrons de conduction se dirigent
et s’accumulent sur la face ① qui se charge négativement tandis que, corrélati-
vement et par défaut électronique, la face ② se charge positivement (doc. 15a).

Ces charges surfaciques vont, comme dans un condensateur plan, créer un champ
de Hall EHM dirigé de la face ② vers la face ① . Dès lors, les électrons de conduc-
tion seront soumis à une troisième force q EHM , dirigée selon (Oy ) qui tend à
compenser les effets de la force magnétique.

Au cours du régime transitoire, la norme du champ de Hall croît par un effet cumu-
latif et les électrons seront de plus en plus faiblement déviés vers la face ① .

À la fin du régime transitoire, la force électrique de Hall q EHM compense exacte-
ment la force magnétique q vk ∧ Bk et les électrons ne sont plus déviés latéralement
(doc. 15b).

■ Régime établi

En régime établi, les lignes de courant sont colinéaires à l’axe (Ox ) et le champ
de Hall est déterminé par la relation :

EHM + vk ∧ Bk = 0l .

En explicitant le champ de Hall, il vient :
EHM = – vk ∧ Bk = – (– v exN) ∧ (BezN) = – B v eyN

soit encore :
EHM = – B j eyN .

En introduisant la constante de Hall RH = (RH < 0), le champ de Hall
s’établit, en définitive, à :

EHM = RH Bj eyN = RH Bk ∧ jl .

La tension de Hall UH s’obtient en intégrant la relation EH = – où V est le

potentiel créé par le champ de Hall. Il en résulte que :

UH = dV = – RH jB dy

d’où finalement :
UH = V2 – V1 = – RH Bj b = – RH (> 0)

en accord avec l’expérience.

Dans le cas de l’argent n = 6 . 1028 m–3. Pour c = 0,1 mm , B = 1 T et I = 5 A ,
nous obtenons UH = 52 µV .

192

©
Ha

ch
ett

eL
ivr

e–
H

Pré
pa

/É
lec

tro
ma

gn
éti

sm
e,

1re
an

né
e,

MP
SI-

PC
SI-

PT
SI

–L
ap

ho
to

co
pie

no
na

ut
or

isé
ee

st
un

dé
lit

10. La force de Lorentz
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+ + + + + + + +
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– e EH

EH UH > 0
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x

y
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Doc. 15. Origine du champ de Hall.



Cette valeur est très faible : il faut l’amplifier pour une mesure précise. En fait, le
phénomène est facilement observable avec des matériaux qualifiés de semi-conduc-
teurs, pour lesquels le nombre n par unité de volume de porteurs de charges qui
participent à la conduction est nettement plus faible (105 à 106 fois plus faible). Il
est courant d’utiliser de telles sondes à semi-conducteur pour la mesure d’un champ
magnétique, par exemple en travaux pratiques.

Remarque

Nous avons envisagé un métal avec ses électrons de conduction. Il est possible d’ima-
giner une conduction par charges positives (qualifiées de trous dans les semi-conduc-
teurs) (doc. 16).
Pour un courant I > 0 , ces charges positives se déplacent également, sous l’effet
de la force magnétique, vers la face avant ① , pendant la phase transitoire. La ten-
sion de Hall est alors de signe opposé à celle obtenue avec des électrons.
Le signe de la tension de Hall peut renseigner sur celui des porteurs de charges.
Il faut toutefois être très prudent dans ces interprétations, en n’oubliant pas que le
modèle proposé est trop simpliste pour lui accorder un crédit illimité.

4.4.3. Champ de Hall et force de Laplace

4.4.3.1. Le modèle volumique

Reprenons le ruban métallique parcouru par un courant d’intensité I , en présence
d’un champ magnétique, et intéressons-nous à la force s’exerçant par unité de
volume sur ce conducteur supposé au repos dans un référentiel � .

Dans un volume élémentaire dt , nous avons des charges mobiles (n par unité de
volume) et des charges fixes (également n par unité de volume). Étudions les forces
s’exerçant sur ces charges (doc. 17).

Pour un élément de volume dt , nous avons donc :

dFN = n e ENH dt .

Sachant que ENH = RH BN ∧ jl , avec RH = – , nous obtenons :

dFN = jl ∧ BNdt ,

c’est la force de Laplace. Elle représente la résultante des forces électromagné-
tiques sur un élément conducteur.

4.4.3.2. Généralisation

Nous admettons que l’expression de la force de Laplace est conservée lorsque
l’élément de conducteur est en mouvement de translation dans le référentiel
galiléen � .

La force de Laplace à laquelle est soumis un élément conducteur de volume
dt parcouru par un courant de vecteur densité jll, placé dans un champ
magnétique BNN est : dFNNLa = jll Ÿ BNNdt .
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10. La force de Lorentz

a)

I

j
B

v

– ev B

+ + + + + + +

– – – – – – –

– eEH

EH

UH > 0

porteurs
de charge

négatifs
(q = – e)

b)

I

j
B

v

qv B

– – – – – – –

+ + + + + + +

qEH

EH

UH < 0

porteurs
de charge

positifs
(q > 0)

Doc. 16. Inversion du champ de Hall
(et de la tension de Hall) en fonction
du signe des porteurs de charge.

b Doc. 17. Détail des forces par unité
de volume. EN0 représente la compo-
sante de EN parallèle à jl et le champ
électrique total est égal à :

EN= EN0 + ENH .

forces par unité de volume

charges

charges mobiles

charges fixes 0 + n e( 0 + H )

résultante

– n e( 0 + H )E E – n e ∧ Bv

+ n e( 0 + H )E E E E

influence de
= 0 + HEE E

influence de B

– n e 0 car

H + ∧ =BE
E

v 0



Lorsque la modélisation volumique utilisée est remplacée par une modélisation
linéique de courant (fil de section négligeable parcourue par un courant d’inten-
sité I) , il suffit de remplacer jl dt par I d	l (élément de courant de même dimen-
sion) de sorte que la force de Laplace à laquelle est soumise un tel élément est :

dFNLa = I d	l ∧ BN.

C’est la formulation historique de la force de Laplace.

En effet :

FN = I d	l ∧ BN = I d	l ∧ BN = I d	l ∧ BN = 0 ,

car d	l = 0.

La résultante des forces s’exerçant sur un circuit fermé placé dans un
champ magnétique uniforme est nulle.

La force de Laplace à laquelle est soumis un élément de courant I d	ll placé
dans un champ magnétique BNN est :

dFNNLa = I d	ll Ÿ BNN ,

et pour une portion de circuit :

FNN = I d	ll Ÿ BNN .
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10. La force de Lorentz

a)

B

dFLA = Id	 B

Id	

Idl

b)

Id	

I

B

A

Doc. 18. a) Force de Laplace sur un élé-
ment de courant filiforme.
b) Force de Laplace s’exerçant sur la
portion de circuit AB .
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10. La force de Lorentz

C Q F R
● La force électromagnétique subie par une particule de charge q et de masse m , se trouvant, à la date t , au

point M du référentiel galiléen � , en présence d’un champ électrique Ek(M, t) et d’un champ magnétique
Bk(M, t), et se déplaçant à la vitesse vk (M, t)/� est donnée par :

FLok = q [Ek(M, t) + vk (M, t)/� ∧ Bk(M, t)] .
Dans le cas de champs permanents et indépendants du temps, nous avons :

FLok = q (Ek + vk ∧ Bk) .

● Le travail de la force magnétique Fk = q vk ∧ Bk qui s’exerce sur une particule est nul. L’énergie cinétique de
cette particule est constante (théorème de la puissance cinétique). La norme de sa vitesse au cours du mou-
vement est constante :

= Fk . vk = 0 , donc �K = cte et v = cte .

● CHAMPS ENN ET BNN CROISÉS
Une particule placée dans des champs En et Bn croisés uniformes et indépendants du temps, subit une vitesse de
dérive :

.

● MOUVEMENT D’ENSEMBLE
• Un mouvement d’ensemble de charges est un courant électrique, dont le vecteur densité volumique de courants
jl est défini par jl = n q vk , où n représente le nombre de porteurs mobiles par unité de volume et q la charge
de chacun des porteurs.

• L’intensité I qui traverse une surface S à la date t est donnée par le flux du vecteur densité de courants à tra-
vers S à cette date, défini par :

I = jl . dSn .

● LA LOI D’OHM LOCALE
• La vitesse d’ensemble (ou de dérive) des particules (q, m) participant à la conduction est donnée par vk = m Ek ;
m désigne la mobilité de ces particules (m = q ). Pour les électrons, m = – e est négatif.

• Le vecteur densité volumique de courants jl (s’exprimant en A . m–2) est proportionnel au champ électrique
appliqué au conducteur jl = g Ek , g désigne la conductivité électrique du milieu (dit ohmique), dont l’expression
est donnée par g = n q2 (t voisin de 10–14 s).

• L’inverse de la conductivité r = est la résistivité. La conductivité s’évalue en S.m–1 et la résistivité en Ω.m.

• La généralisation de la loi d’Ohm locale, lorsque le conducteur est placé en présence simultanée d’un champ
électrique Ek et d’un champ magnétique Bk , s’écrit jl = g Ek + RH ( jl ∧ Bk) , où la constante de Hall RH est
égale à .

● FORCE DE LAPLACE
• La force de Laplace à laquelle est soumis un élément conducteur de volume dt parcouru par un courant de vec-
teur densité jl , placé dans un champ magnétique BN est dFNLa = jl ∧ BNdt .

• La force de Laplace à laquelle est soumis un élément de courant I d	l placé dans un champ magnétique BN est

donnée par dFNLa = I d	l ∧ BN , et pour une portion de circuit FN = I d	l ∧ BN .

• La résultante des forces s’exerçant sur un circuit fermé placé dans un champ magnétique uniforme est nulle.
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Avez-vous retenu l’essentiel ?

✔ Donner l’expression de la force de Lorentz en indiquant les unités des grandeurs qui y figurent.

✔ Quelle est la puissance de la force de Lorentz ?

✔ Quelle est la nature de la trajectoire d’une particule chargée dans un champ électrostatique uniforme ?

✔ Quelle est la nature de la trajectoire d’une particule chargée dans un champ magnétostatique uniforme ?

✔ Quelle est la vitesse de dérive vDn d’une particule ?

✔ Quel est le principe de fonctionnement d’un cyclotron ?

✔ Quand seul un champ électrostatique est appliqué, quelle est l’expression de la loi d’Ohm locale ?

✔ Quelle est l’expression de la résistance R d’un conducteur filiforme de longueur 	 , de section s et de conduc-
tivité g ?

✔ Comment se généralise la loi d’Ohm locale quand un champ magnétostatique se superpose à un champ électro-
statique appliqué ?

✔ Pouvez-vous décrire l’effet Hall ?

Du tac au tac (Vrai ou faux)

Contrôle rapide

1. La force magnétique est sans effet sur le vecteur
vitesse.

❑ Vrai ❑ Faux

2. La déviation électrostatique par les plaques d’un
condensateur plan est proportionnelle à la ten-
sion U appliquée et inversement proportion-
nelle à l’énergie cinétique �K de la particule.

❑ Vrai ❑ Faux

3. En variant les expériences utilisant la force de
Lorentz, il est possible de déterminer la charge
q d’une particule et sa masse m .

❑ Vrai ❑ Faux

4. Même en l’absence de force appliquée, les por-
teurs d’un milieu conducteur sont mouvement
d’agitation thermique et leurs vitesses moyennes
ne sont pas nulles.

❑ Vrai ❑ Faux

5. La constante de relaxation de conduction t d’un
milieu conducteur est de l’ordre de 10–3 s.

❑ Vrai ❑ Faux

6. Dans un conducteur, la vitesse d’ensemble des
porteurs est de l’ordre de quelques millimètres
par minute, même en présence d’un courant
de forte intensité.

❑ Vrai ❑ Faux

7. La mobilité m des porteurs est une quantité
algébrique.

❑ Vrai ❑ Faux

8. La constante de Hall RH = est toujours
négative.

❑ Vrai ❑ Faux

9. Compte tenu de la très faible valeur de la tension
de Hall dans les rubans métalliques, l’effet Hall
ne conduit à aucune application pratique.

❑ Vrai ❑ Faux

� Solution, page 200.



Focalisation d’électrons par un champ
électrique

Des électrons, préalablement accélérés par une tension
V = 10 kV , pénètrent par la fente A supposée très fine dans
une région où règne un champ électrique uniforme EN = E eyN .
On désire recueillir ces électrons à travers une fente B prati-
quée dans le plan opaque (xOz) , à la distance AB = L = 20,0 cm
de A .
On peut régler l’angle a que fait le vecteur vitesse v0n des
électrons en A avec l’axe (Ax) , ainsi que la norme et le sens
du champ électrostatique EN . Le vecteur v0n est supposé paral-
lèle au plan (xOy) .

1) Quelles sont les valeurs optimales à donner à a et à EN
pour réaliser la focalisation de ces électrons, sachant que le
faisceau incident présente une faible dispersion angulaire ∆a ?

(a appartient à .)

2) La largeur de la fente placée en B étant ∆L = 2 mm , don-
ner un ordre de grandeur de la dispersion angulaire ∆a accep-
table pour ne pas atténuer sensiblement l’intensité du faisceau
d’électrons étudié.

Mesure de avec montage utilisant
des bobines de Helmholtz

Dans le montage suivant, les électrons préalablement accélé-
rés par une différence de potentiel V = 2,5 kV , décrivent
dans l’ampoule où règne un vide poussé une trajectoire cir-
culaire de rayon r = 3,27 cm .

Le champ magnétique créé par les bobines, en géométrie
d’Helmholtz, est quasi uniforme et sa valeur numérique égale
à 5,12 mT .

En déduire le rapport .

Déflexion magnétique

Des électrons pénètrent en O , avec une vitesse v0n = v0exn ,
dans un domaine � de largeur L , où règne un champ magné-
tique BN = B ezn uniforme et constant. On admettra qu’ailleurs
le champ magnétique est nul. On suppose la largeur L du
domaine telle que :

L << = r , soit << 1 .

Un écran (E) fluorescent a été placé à la distance D +

du point O (XE = D + ) .

1) Déterminer l’ordonnée yP du point P où l’électron quitte
le domaine � , ainsi que l’angle a que fait avec (Ox) la
vitesse de l’électron en ce point.

2) En déduire la position du point d’impact I sur l’écran.

3) Vérifier que le support du vecteur PIm passe très près du

point Q d’abscisse dans les hypothèses d’étude.

Données : L = 1 cm ; tension accélératrice V = 10 kV ;
B = 3 mT et D = 20 cm.
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10. La force de Lorentz
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Mouvement d’une particule chargée
dans un champ magnétique
en présence d’une force de frottement

Une particule de charge q = e et de masse m , initialement
en O avec une vitesse v0n = v0exn , se déplace dans un milieu
fluide, dans une région de l’espace où règne un champ magné-
tique uniforme :

BN = B ezn .

Cette particule subit une force de frottement qu’on supposera
de la forme :

FNfrott = – k vn (k constante positive).

Décrire le comportement de cette particule. On pourra intro-
duire une constante de temps t et la pulsation cyclotron
w = . Il est suggéré de prévoir d’abord ce qui va se pro-

duire, puis d’envisager si possible un traitement numérique
de la question, et enfin un traitement analytique.

Protons dans des champs Ekk et Bkk
parallèles

Des protons sont émis en O par une source quasi ponctuelle,
avec une vitesse initiale v0n = v0eyn . Étudier leur mouvement
ultérieur en présence de champs électrique et magnétique uni-
formes :

EN = E ezn et BN = B ezn , avec E > 0 et B > 0 .

Montrer qu’en plaçant judicieusement des diaphragmes dans

le plan (xOz) on peut mesurer le rapport pour les pro-
tons.
Comment varie l’angle que fait le vecteur vitesse avec l’axe
(Oz) , en fonction de la position du diaphragme ?

La méthode des paraboles

Des ions positifs de masse m et de charge q , animés d’une
vitesse v0n = v0ezn , pénètrent dans une région de largeur L où
règnent des champs EN = E eyn et BN = – B eyn uniformes et
constants (E et B positifs).

Supposons que la distance L soit nettement inférieure à

et faisons une étude (avec cette approximation) des

déflexions imposées par les champs EN et BN .

Déterminer le point d’impact I de la particule sur un écran
fluorescent placé à la distance D du point Q milieu de la
région où règnent les champs EN et BN .

Protons sur cible

Un faisceau monocinétique de protons, d’intensité I = 0,25 A,
traverse sans subir de déviation une région � de l’espace où
règnent des champs EN et BN uniformes et constants, trans-
versaux et croisés (EN. BN = 0).
Ce faisceau est ensuite absorbé par une cible métallique reliée
au sol. Déterminer la force moyenne subie par la cible.
Données : E = 150 kV . m–1 et B = 30 mT .

Mouvements d’un proton
dans des champs Ekk et Bkk croisés

Un proton pénètre en O avec une vitesse initiale négligeable
(donc supposée nulle) dans une région de l’espace où règnent
des champs EN et BN donnés par :

EN = E0 cos(w1t) eyn et BN = B ezn .

Exercices
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E0 et B sont des constantes
positives, de même que w1 .

On posera a =

et w = .

1) Après avoir vérifié que le
mouvement est décrit dans le
plan (xOy), établir les équa-
tions différentielles du mouve-
ment.

2) Envisager une résolution numérique ou analytique de ces
équations. En posant w1 = n w étudier le comportement de
la trajectoire dans les cas limites n << 1 , puis n >> 1 .
Que prévoyez-vous pour n = 1 ? Le vérifier en cherchant une
solution de la forme y = a t sin (w t) .

Mouvement d’une particule chargée dans
un champ magnétique avec frottement

Une particule de charge q > 0
et de masse m se déplace dans
un milieu où elle subit une force
de frottement de la forme :

FN = – k v2 ,

avec k positif, en présence
d’un champ magnétique uni-
forme et constant, normal à la
vitesse v0k initiale de la parti-
cule.
1) Montrer que la norme de la vitesse de la particule décroît
au cours du temps. La vitesse nulle est-elle atteinte au bout
d’une durée finie ou non ?
2) Contrôler éventuellement les résultats par une étude avec
ordinateur.

Vitesse de dérive

Une particule de masse m et de charge q (positive) est
mobile dans un champ magnétique invariant au cours du

temps, mais présentant une inhomogénéité en y = 0 . Les
lignes de champ magnétique sont parallèles à l’axe (Oz) ; le
champ magnétique dépend de y selon la loi :

BN (y < 0) = B0 ezn

et BN (y > 0) = (B0 + ∆B) ezn ,
avec B0 > 0 et ∆B > 0 .
On se limite au mouvement de la particule dans le plan (xOy).
On suppose qu’à t = 0 , la particule est en O , avec une
vitesse v0k = v0eyn .
Étudier le mouvement de dérive de cette particule.
Que se passe-t-il si q < 0 ?

Électron émis par un fil cylindrique

Un conducteur cylindrique
très long, d’axe (Oz) et de
section circulaire de rayon a,
parcouru par un courant d’in-
tensité I , crée en un point M
repéré par ses coordonnées
cylindriques (r,q,z) un champ
magnétostatique donné par :

BN = eqk (r 
 a) .

Il existe une probabilité non
nulle pour qu’un électron soit
émis par ce fil, avec une
vitesse initiale que l’on supposera radiale.
Étudier le mouvement de cet électron, et déterminer en parti-
culier la distance maximale à laquelle il peut s’éloigner du fil.

Focalisation d’un faisceau d’électrons dans
un condensateur cylindrique

Un condensateur cylindrique est formé de deux armatures
métalliques cylindriques, de même axe (Oz), et de rayons
respectifs a et b , avec a < b .
Ces armatures sont portées aux potentiels respectifs Va et
Vb , avec Vb > Va et on admet que le champ électrostatique
régnant dans l’espace entre les armatures est donné par :

EN = – erk , avec A =

en coordonnées cylindriques (r, q, z) d’axe (Oz) .
En fait le dispositif décrit ici, permettant une détermination
expérimentale de , comporte un tronçon de condensa-

teur cylindrique d’ouverture angulaire q1 judicieusement
choisie. Des électrons pénètrent par la fente fine F1 paral-
lèle à (Oz) (avec OF1 = r0) avec une vitesse initiale v0 sup-
posée normale à (Oz) . On applique en outre un champ magné-
tique uniforme BN = B ezk .
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10. La force de Lorentz
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1) On suppose d’abord v0n . OF1o = 0k (vitesse initiale ortho-
radiale). Déterminer la relation qui doit lier A , r0 , v0 et B
pour que la trajectoire des électrons soit circulaire dans le

condensateur. Montrer qu’il existe une valeur optimale de A
telle que cette relation soit approximativement satisfaite, même
si la norme de la vitesse initiale des électrons présente une
(faible) dispersion autour de la valeur v0 .
2) On suppose maintenant que les vitesses initiales des élec-
trons font un petit angle a avec la normale à OF1 en F1 .
Montrer que le choix q1 = (en radians) permet néan-

moins de focaliser les électrons dans la fente de sortie en F2 .
3) En déduire une méthode de détermination de .

Pour quelle valeur de Vb – Va obtient-on une intensité maxi-
male dans un détecteur placé derrière la fente F2 ?

On prendra r0 = .

Données : a = 3,00 cm ; b = 4,00 cm ; B = 3,00 .10–3 T .

1) La vitesse v0 des électrons est égale à v0 = .

L’équation différentielle du mouvement des électrons est m = – eEeym .

Avec vk (t = 0) = v0 cos a . exm + v0 sin a . eym , x(t = 0) = 0 et y(t = 0) = 0 , nous obte-
nons les solutions suivantes :

.

y s’annule pour deux valeurs de x :

xA = 0 et xB = 2 sin a cos a = 2 sin 2a .

Pour que xB dépende peu de a , il faut que = 0 donc :

cos 2a = 0 et a = a 0 = .

Il faudra donc choisir les conditions suivantes :

E = et a0 = .
A.N. : E = 105 V . m–1 .

2) Le développement limite de xB au voisinage de a = a0 nous donne (en posant
a = a0 + e et en se limitant aux termes d’ordre deux) :

xB(a) = xB(a0) + .

Sachant que xB (a) = L sin 2a , nous obtenons :
xB (a) – xB (a0) = – 2L e2 .

La valeur de ∆a acceptable est donc donnée par :

, soit ∆a = 0,14 rad ≈ 8° .

À partir de mv0 = erB et de mv2
0 = eV , nous obtenons .

On en déduit = 1,8 . 1011 C . kg–1 (la précision sur V n’autorise pas un nombre
plus élevé de chiffres significatifs).

1) La trajectoire des électrons dans � est circulaire et de centre C (xC = 0

et yC = r = ).

Par suite : yP = r (1 – cosa) , avec L = r sin a
et donc : yP = L , avec sina = ,

soit : sina ≈ a = et yP = .

A.N. : v0 = = 59,3 . 106 m . s–1 ; a = = 89,10–3 rad = 5,11° ;

r = 11,2 cm ; = 0,09 et yP = 0,445 mm.

2) Le point d’impact I vérifie y I = yP + tan (a) = D a = D .
A.N. : yI = 1,78 cm.

Exercices
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Solution du tac au tac, p. 196.
1. Faux
2. Vrai
3. Faux
4. Faux

5. Faux
6. Vrai
7. Vrai
8. Faux
9. Faux

Corrigés



3) OQ = r sin ≈ r . La droite de PI passe par le point Q milieu de OT.

Remarque
Notons la différence essentielle entre la déflexion magnétique (yI inversement pro-
portionnelle à m v0) et la déflexion électrostatique (yI inversement proportionnelle
à m v2

0 ). Ceci est mis à profit plus loin pour séparer des isotropes (exercices 6).

Nous sommes en présence, par exemple, de protons dans un liquide sursatu-

rant (protons dans une chambre à bulles). Des bulles de gaz se créent sur le parcours
du proton et matérialisent sa trajectoire. Le procédé était utilisé pour détecter des par-
ticules.
L’équation différentielle du mouvement s’écrit m = q vn ∧ Bk – k vn , soit :

= – w ezn ∧ vn – , avec w = et t = .

Au cours du mouvement la norme de vn diminue (influence de la force de frottement)
et le rayon de courbure de la trajectoire (r = ) diminue : la particule « s’en-

roule » autour d’un point asymptotique M∞ ; c’est ce que nous voyons sur la simu-
lation.

Les équations du mouvement :

= w et

peuvent se regrouper en posant u = x + iy :

= 0 .

Une première intégration donne :

puis, une seconde intégration :

u = .

En séparant les parties réelle et imaginaire, il vient :

La trajectoire de la particule tend vers le point asymptote M∞ de coordonnées :

x∞ = et y∞ = .

Posons wc = et a = . L’équation différentielle du mouvement :

= a ezn + wcvn ∧ ezn

donne en projection :

• = a d’où vz = at et z = t2 ;

• = wcvy et = – wcvx .

En posant u = vx + ivy il vient + wcu = 0 ce qui s’intègre en :

u = iv0 e–wct = iv0(cos wct – i sinwct)
et par suite : vx = v0 sinwc et vy = v0 cos wc

soit, enfin : x = (1 – cos wc) et y = sin wc .

Pour tn = n T = n , la particule entre en contact avec l’axe des z et traverse le

diaphragme s’il est placé en : zn = t2
n = 2π2 n2 .

À ces dates, le vecteur vitesse est incliné d’un angle an sur l’axe (Oz) tel que :

tan an = .

Posons w = et a = (a homogène à une accélération).

L’équation vectorielle du mouvement est m = q Ek + qvn ∧ Bk et les équations

scalaires dans le repère considéré (valable pour x < L) :

, (ce qui donne = w z) ,

(dont la solution est y = at2)

et , (ce qui donne = – w x + v0) .

Les déviations dues aux champs Ek ou Bk sont indépendantes.

L’équation = – w2z a pour solution z = sin w t ,

d’où x = (1 – cos w t) .

Sachant que w t << 1 (avec t = ordre de grandeur du temps t mis par la par-

ticule pour franchir la distance L ), nous pouvons écrire :

z = v0t et x = , (w t << 1) à l’ordre deux.

La particule franchit donc le plan z = L à t = et les coordonnées du point P

où la particule sort des champs sont xP = et yP = .

Le mouvement ultérieur est rectiligne ; la droite passe par le point Q de coordonnées
(0, 0, ).
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10. La force de Lorentz

v0 = 1 ; M∞ [0,3 ; – 0,9] ,
soit tan q = – 3 .
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Les coordonnées du point d’impact I sont :

xI = xP et yI = yP

résultat qui peut encore s’écrire :
xI = et yI = .

L’élimination de la vitesse v0 fournit yI = x2
I . Le point d’impact est donc

situé sur une parabole déterminée par le rapport . La dispersion sur les valeurs
de v0 permet de décrire cette parabole.

Si la masse varie, le point figuratif se déplace sur un autre morceau de parabole. Il est
possible ainsi de mettre en évidence la présence d’isotropes. Il s’agit d’un spectro-
graphe de masse particulier utilisé la première fois par J.-J. Thomson.

Comme les particules traversent la zone sans déviation, cela signifie que :
Ek + vn ∧ Bk = 0 ,

soit vn = vDm = exm (v = 5 . 106 m . s–1).

Chaque proton possède une quantité de mouvement pn = m v exm . Le nombre dn de
protons qui arrivent sur la cible pendant un intervalle de temps d t (donné par
dn = d t) subissent une variation de quantité de mouvement égale à ∆pn = – pn .

La force exercée par la cible sur ces protons est donc égale à :

dn .∆pn = Fk. d t = – m v exm d t , soit Fkcible→protons = – m v exm .

D’après le principe des actions réciproques, la force subie par la cible est directement
apposée, soit Fkprotons→cible = + m v exm .

A.N. : F = 13 mN.

1) Si la vitesse vn du proton est dans le plan (xOy) , elle y restera indéfini-

ment, car la force électrique et la force magnétique restent dans ce plan. Comme il

n’y a aucune composante de force suivant ezm , la vitesse vzm est constante. Or à

t = 0, vn = 0n, donc vz = 0.

Les équations différentielles d’évolution dans ce plan s’écrivent :
x
.. = wy

. (1)
y
.. = a cos(w1t) – wx

. (2)

2) En reportant la soution de (1) (x. = w y) dans l’équation (2) nous obtenons :
y
.. + w2 y = a cos w1t ,

soit y(t) = A cos (w t + j) + .

Avec les conditions initiales y(0) = 0 et y (0) = 0 , nous obtenons (w ≠ w1) :
y(t) = [cos w1t – cosw t]

et x(t) = .

Posons w1 = n w et étudions les simulations suivantes solutions des équations :
x
.. = w y

.

y
.. = a cos(n w t) – wx

. ,
avec w = 2π et a = 1 pour diverses valeurs de n .

• S.1. n = 0 : nous obtenons la trajectoire cycloïdale classique du mouvement d’une
charge (q, m) dans Ek et Bk croisés, indépendants du temps.

• S.2. n = 0,1 et S.3. n = 0,2 : la trajectoire reste à distance finie.
Pour n << 1 :

x (t) ≈ sin n w t et y(t) ≈ – [cos (n w t) – cos w t] .

La courbe est inscrite dans le rectangle allongé suivant l’axe (Ox) .

• S.4. n = 1 :

y(t) = t sin w t et x(t) = [sin w t – (w t) cos w t] ,

la trajectoire diverge.

• S.5. n = 5 et S.6. n = 10 : la trajectoire reste à distance finie.
Pour n >> 1,

x (t) ≈ sin w t et y(t) = – [cos(n w t) – cos w t] .

La courbe est inscrite dans le rectangle .
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Remarque :
En excluant la valeur n = 0 , la trajectoire diverge pour n = 1 . Ce comportement
a reçu une application, l’omégatron : il est possible de « mesurer » précisément
en recherchant la valeur w1 = w pour laquelle les particules divergent, Ek et Bk
étant connus.

1) La force magnétique ne travaille pas. La force de frottement a pour effet

de diminuer la vitesse de la particule.
L’équation différentielle du mouvement s’écrit :

.

En multipliant scalairement par vn :

, soit ,

et en intégrant, nous obtenons , soit v = .

Le mouvement s’effectue dans le plan (xOy ) et la vitesse v s’annule au bout d’un
temps infini.

2) La vitesse diminue au cours du temps. Le rayon de courbure de la trajectoire dimi-
nue. Nous obtenons une « spirale » s’enroulant autour d’un point asymptotique limite
M∞ comme l’indique la simulation.

x
.. = + wy

. – f v x
. et y

.. = – w x
. – f v y

. ,
avec :

v = ; w = 2π ; f = 1 ; x
.
0 = 0,5 ; y

.
0 = 1 ; x0 = 0 et y0 = 0 .

La vitesse reste en permanence égale à v 0 en norme. Considérons une

charge q > 0. Si y > 0 , la particule décrit un demi-cercle de rayon r1 =

pendant une durée t1 = .

Si y < 0 , la particule

décrit un demi-cercle de

rayon r2 = pen-

dant une durée :

t2 = (r2 > r1) .

Il existe donc une vitesse
de dérive VD , dans le
sens des x décroissants,
définie par :

.

La vitesse de dérive est opposée si q < 0 .
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10. La force de Lorentz
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Le mouvement s’effectue dans un plan méridien q = cte.

En effet LOz est constant car :

= ezm . [OMo ∧ (q vn ∧ Bk)] = 0 (q = – e).

L’équation différentielle du mouvement devient r
.. = z

. et z
.. = – r

..
En remplaçant B par son expression nous obtenons :

z
.. = – , d’où z

. = – .

Sachant que z
.2 + r

.2 = v 2
0 (la force magnétique ne travaille pas), la cote rmax sera

atteinte lorsque z
. = – v0 , soit :

rmax = a exp .

La simulation montre l’allure de la trajectoire.

Mouvement d’un électron émis par un fil cylindrique parcouru par un courant I .

1) La relation fondamentale de la dynamique appliquée à un électron, en

coordonnées polaires donne :

(1)

(2)

Si r = r0 = cte, alors q
.
= cte = .

Nous déduisons que A = B r0 v0 – .

Cette expression doit peu dépendre de v0 , soit = 0 = B r0 – 2 v0 .

Ce qui nous donne :
A =

et en éliminant la vitesse A = B2 r2
0 , soit .

2) Les simulations jointes montrent qu’il existe bien une focalisation (a = 5° et
a = – 5°) 125° < q1 < 128°.

Retrouvons ce résultat par le calcul : posons r = r0 + r et cherchons linéariser l’équa-
tion en r .
L’équation (2) nous donne :

r2q
.

– r0 v0 cos a = (r2 – r2
0) , soit q

.
= (car v0 = r0 et a << 1).

L’équation (1) nous donne :

r
..

– (r0 + r) = ,

soit en linéarisant r
..

+ 2 r = 0 ,

dont la solution est r = .

Mise en évidence de la focalisation pour a = ± 5°.

Pour t1 = , j = 0 ; à cette date q = q1 = , soit encore 127°, ce qui

correspond bien au résultat attendu.

3) q1 étant fixé, on fait varier A de façon à collecter le maximum d’électrons et on
en déduit , ce qui correspond à une mesure très précise de .

A.N. : V0 – Va = B2 r2
0 ln = 139 volts.

Mise en évidence du point de focalisation avec a ± 5°.
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1. Définition
Soit une fonction scalaire f dont les valeurs f(M) dépen-
dent des coordonnées d’espace : cette fonction définit un
champ scalaire dont les surfaces de niveau (S) ont pour
équation f(M) = cte.

Considérons deux
points arbitraires
infiniment voisins
M et M’ (doc. 1) et
notons :

dMM = MM’O et
df = f(M’) – f(M).

L’opérateur gradOO ,
appliqué au
champ scalaire
f(M), définit un
champ vectoriel gradOO ( f(M)) tel que, par définition :

df = gradO (f(M)) . dMM .

2. Propriétés
• Si M et M’ sont deux
points de la même sur-
face de niveau (S), alors,
d’une part, dMM = MM’O

est un vecteur du plan
tangent en M à la surface
(S) et d’autre part :
df = f(M’) – f(M) = 0
(doc. 2). De la relation de
définition du gradient, nous concluons que :
Le vecteur gradOO (f(M)) est orthogonal en M à la sur-
face de niveau passant par ce point.

• Nous appellerons lignes orthogonales aux surfaces de
niveau (S), les courbes tangentes en chacun de leur point
M au vecteur gradO (f(M)). Les lignes orthogonales sont
aussi, par définition, des courbes orientées dans le sens du
vecteur gradO (f(M)) : ces courbes sont donc les lignes de
champ de gradO f.
Ainsi, pour un champ scalaire f(M) donné, il est possible
de définir une infinité de surfaces de niveau (S) et une infi-
nité de lignes orthogonales (C) associées (doc. 3).
• Considérons une ligne orthogonale (C) et un déplace-
ment élémentaire dMM = MM’O , le long de la ligne et dans
le sens de la ligne (doc. 4).

Les vecteurs dMM et gradO (f(M)) étant alors colinéaires et
de même sens, nous pouvons écrire :

df = gradO (f(M)) . dMM > 0

et conclure :

Le vecteur gradOO (f(M)) est orienté dans le sens crois-
sant de la fonction f.

3. Où rencontre-t-on l’opérateur gradient
en physique ?
■ Gradient de pression
Considérons un fluide en équilibre dans le champ de pesan-
teur terrestre. Les pressions les plus importantes sont obte-
nues pour les altitudes faibles. Le gradient de pression est
dirigé vers le bas (doc. 5).

■ Gradient de température
Considérons un milieu homogène situé entre deux ther-
mostats aux températures T1 et T2 telles que T2 > T1. Les
températures, en régime permanent, seront d’autant plus
élevées que l’on sera au voisinage du thermostat à la
température T2. Le gradient de température est dirigé de
T1 vers T2. Le flux thermique est dirigé en sens inverse
(doc. 6).

L’opérateur gradient

Doc. 5. Dans un fluide, il existe un gradient de pression.

x

y

O

pressions faibles

pressions élevées

isobareg pgrad P

Doc. 1.

O

f (M' )

f (M )

z

y

x

ndM
M'

M

Doc. 2.

pgrad f (M)

M'
M

Doc. 3.

(C3)(C2)
(C1)

S1

S2

S3

Doc. 4.

(S )
(S')

M'

M

ndM

pgrad f (M)
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Annexe

■ Gradient d’indice
Considérons une fibre optique, cylindrique, dont l’indice
optique est fonction de r, distance du point considéré à
l’axe de la fibre. Pour qu’un rayon optique soit stable dans
cette configuration, il faut que les indices les plus élevés
soient situés proches de l’axe de la fibre. Le gradient d’in-
dice est donc dirigé vers l’axe (doc. 7).

■ Gradient de potentiel
Soit un champ électrique EN dérivant d’un potentiel V, c’est-
à-dire un champ de nature électrostatique. La relation liant
le champ EN et le potentiel V est de la forme EN = – gradO V.

Le vecteur gradO (V) étant orienté vers les potientiels
croissants, le champ EN est dirigé vers les potentiels décrois-
sants.

4. Expressions du gradient
Pour trouver ses composantes, il suffit d’écrire :

df = drn. gradO f,

en précisant l’expression du déplacement élémentaire drn
dans le système de coordonnées utilisé.

■ Coordonnées cartésiennes (doc. 9)
Nous écrivons :

df (x, y, z) = dx + dy + dz

drn = dx . enx + dy . eny + dz . enz

df = drn . gradO f = dx . (gradO f )x + dy . (gradO f )y

+ dz . (gradO f )z

donc par identification des
expressions de df :

gradO f = enx + eny

+ enz .

■ Coordonnées cylindriques (doc. 10)
Nous écrivons :

df (r, q, z) = dr + dq + dz

drn = dr . enr + rdq . enq + dz . enz

df = drn . gradO f = dr . (gradO f )r + rdq . (gradO f )q
+ dz . (gradO f )z

Soit :

gradO f = enr + enq

+ enz .

■ Coordonnées sphériques (doc. 11)
Nous écrivons :

df (r, q, j) = dr + dq + dj

drn = dr . enr + rdq . enq + r sin q dj . enj
df = drn . gradO f = dr . (gradO f )r + rdq . (gradO f )q

+ r sin qdj . (gradO f )j

Soit :

gradO f = enr + enq

+ enj .

Doc. 7. Dans une fibre optique, ces gradients d’indice per-
mettent de guider un rayon optique.

z

r
indices faibles

indices faibles

indices élevés près de l'axe
pgrad n

pgrad n

Doc. 8. Exemple de gradient de potentiel (V0 > 0).
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Doc. 6. T2 > T1 : dans un solide il existe un flux thermique
orienté en sens inverse du gradient de température.
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A - C
Approximation des régimes lentement
variables 117

Champ
de gradient 40

de Hall 191

électrostatique créé par

un dipôle 84-85

un fil infini chargé l 70

un cylindre chargé en surface 70
surfacique uniforme hère chargée
en surface 72

une distribution quelconque 19

gravitationnel 31
magnétostatique créé par

un courant filiforme 163
un dipôle 165-167
un élément de courant 119
un fil rectiligne infini 142

un solénoïde (sur son axe) 132
un solénoïde infini 148-149
une nappe plane infinie 145

magnétostatique uniforme 144

Changement de référentiel
pour Ek et Bk 176

Circulation du champ
électrostatique 40
magnétostatique d’un fil 142

Condensateur 51
plan 52

Capacité 53
Déflexion électrostatique 179

Conducteurs en équilibre électrosta-
tique 51
Conduction d’un métal 186
Conductivité électrique 189
Conservation de la charge électrique

102
Constante

d’interaction électrostatique 18
de Hall 191

Courant
de conduction 103
de convection 104
électrique 102
particulaire 104

Cyclotron 185

D
Dipôle

Approximation dipolaire 165
électrostatique

Actions d’un champ 88
champ créé 84-85
dipôle non rigide 93
Modèle du dipôle 82-83
Moment en O des forces 90
Objets polaires 82
Potentiel créé 83-84

Dipôle magnétique
Analogie avec le dipôle électrosta-
tique 165
Champ créé 165-167
moment dipolaire 82, 163

Discontinuité
du champ électrostatique 29
du champ magnétostatique 150

Distribution de charge
Antisymétrie plane 25
Invariance par translation 27

rotation 27
linéique 20
surfacique 20
Symétries 11, 24

cylindrique 69
élémentaire 24
multiple 29
plane 27, 67
sphérique 71

volumique 20

Distribution de courant
Antisymétrie plane 108, 124
filiforme 105
Invariance

par rotation 110, 125
par translation 109, 125

surfacique 107
Symétries 108, 122

multiples 110
plane 108, 123

volumique 106

Divers courants électriques 102

E - F - G
Échelle

continu (milieu) 8
macroscopique 8
mésoscopique 8
microscopique 7

Électrons de conduction 186
Énergie potentielle 49

d’interaction 93
d’interaction

de deux charges ponctuelles 50
électrostatique 49

Équation de transport 191
Flux

canalisation du flux magnétique 129
du champ de gravitation 63
du champ électrostatique 62, 65

d’une charge 62
du champ magnétique 127

Force
de Laplace 193
de Lorentz 117, 176

Gradient
Expression 205
Opérateur 205

I - L - M
Intensité électrique 102
Invariance de jauge 42

Lignes de champ 22,121
Loi

d’Ohm locale 188
de Biot et Savart 118, 120
de Coulomb 18

Milieu continu 8

Mobilité 189

Moment magnétique
atomique 164

O - P - R
Objets polaires 82

Oscilloscope analogique
Principe 178

Particule chargée dans les champs Ek
et/ou Bk 177

Permittivité électrique
du vide 18
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Potentiel
d’une distribution 44
électrostatique 41

Principe
de superposition 19, 120

Répartition de charges 7
Résistance d’un conducteur filiforme

cylindrique 189
Résistivité 189

S - T - V
Solénoïde infini

Limite 132, 148-149

Spectrographe
de Bainbridge 185
de masse 184

Temps
de conduction 187
de relaxation 187

Théorème
d’Ampère 143, 145-149

Choix du « contour d’Ampère »
145-148

de Gauss 64
Topographie

du champ électrostatique 22

du potentiel électrostatique 46
Travail de la force électrostatique 49
Tube de champ 23

Vecteur
axial 126
Élément de courant 118

Vitesse de dérive 18
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